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PDO and ENSO 



From Alexander et al 2002 

ENSO forces remote 
changes in global 
oceans via the 
“Atmospheric Bridge” 

Observed ENSO composite (warm-cold events) 

Note that this part can also 
occur from weather variability 



“Re-emergence” : SST anomalies can recur in 
consecutive winters in the extratropics  

From Alexander et al 2002 
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Depth vs. time cross-
section of ocean 
temperature 
anomalies (ºC) in the 
central Pacific 
 
Thick lines indicate 
seasonal evolution of 
the depth of the 
“mixed layer”  
(where heat is well-
mixed) 



Forecast: PDO (this year) = .6PDO(last year) + .6ENSO(this year) 

r=.74 

PDO depends on ENSO and re-emergence 

PDO (this year) = 0.6 x PDO(last year) + 0.6 x ENSO(this year) + weather noise 

ENSO forcing of simple AR1 model, or “reddened ENSO” 



Pacific Ocean 
currents and 
variability 
 
 
Kuroshio-Oyashio Extension 
(KOE) system is a key 
component of the North 
Pacific ocean-atmosphere 
system 
 
Shifts in the Oyashio extension 
(SST front) are associated with 
longer time scales (westward 
propagating Rossby waves) 



“Multivariate Red Noise” 

• Noise/response is local (or an index) 
•  For example, air temperature anomalies force SST 
•  use univariate (“local”) red noise: 

dx/dt = bx + fs   where x(t) is a scalar time series, b<0, 
               and fs is white noise 

• Noise/response is non-local: patterns matter 
•  For example, SST sensitive to atmospheric gradient 
•  use multivariate red noise (Ornstein-Uhlenbeck): 

dx/dt = Bx + Fs   where x(t) is a series of maps, B is stable, 
     and Fs is white noise (maps) 

•  If B is nonnormal (not symmetric), transient anomaly growth is 
possible even though exponential growth is not 

• Determine B with “linear inverse model” (LIM), from 
lagged covariability (space and time) statistics of x 



PDO/ENSO spectra 

 
dx/dt = Bx + Fs

  
 
x represents seasonal mean 
anomalies, 1958-2008, of 
•  Pacific SST 
•  tropical thermocline 

depth (20ºC isodepth) 
•  North Pacific mixed 

layer (30-100m) 
temperature  

 
B determined from 3-
month lag 

  
     

Power spectra of PDO
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Power spectra of ENSO
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 Dominant “internal” North Pacific SST mode 

Left: Leading pattern of North Pacific seasonal variability (PDO) 
 
Right: Leading pattern of “internal” North Pacific seasonal variability (after 
removing effects of tropical forcing from B) 

SST pattern associated with leading EOF of 
SST gradient in Oyashio extension 



Different dynamical processes build up the PDO 

Leading Pacific 
dynamical 
modes, with 
time series 
(1900-2001) 

Eigenmodes determined 
from similar analysis of B but 
using annually averaged SST 
data on 5x5 grid (note: 
these are not EOFs) 
 
Not shown: “Interannual 
ENSO” 

Almost all long range skill 
contained in first 2 patterns 

1900 2001 

Time series Trend 

KOE-related 

Decadal ENSO (aka CP ENSO)  



Constructing the 
PDO from a sum 
of three AR1 
processes 
(red noises) 
  
Time series show projection 
of each mode onto the PDO 

PDO  =  KOE-related 
 +Decadal ENSO
 +Interannual ENSO 

“KOE-related” 

“Decadal ENSO” 

“Interannual ENSO” 

Reconstructed PDO 

PDO 

“Regime shifts” 

Newman 2007 



Decadal hindcast skill 
is lowest in most of 
the tropical and 
Northeast Pacific 
 
Skill of LIM and CMIP5 
CGCM decadal hindcasts, 
1960-2000 (Newman 2013) 
 
ENSO is noise for decadal 
forecasts, including for the 
PDO 

detrended before calculating these indices to remove the
externally-forced variation [Oldenborgh et al., 2012].
A four-year running average is applied to both indices to
filter out higher interannual frequencies. Figure S3 in Text
S1 shows the variation of the AMO and PDO indices from
observations and the MME hindcast. Both indices show
strong decadal variability. The gray shades in Figure S3
represent the ranges of one standard deviation of the
ensemble mean in each hindcast.
[10] The predictive skill for the AMO and PDO index is

measured by correlation coefficient and root-mean-square
error (RMSE) between the simulations and observation.
Figure 4 shows the correlation coefficient as a function of
lead-time for the MME and the ensemble mean of individual
models. For representing confidence limits of significance,
the correlations and RMSE of the persistence prediction are
included (Figure 4 and Figure S4 in Text S1). Horizontal
lines in each figure represent the confidence level (Figure 4)
and observed standard deviation (Figure S4 in Text S1),
respectively. For the AMO prediction, the correlation coef-
ficients and RMSE of almost all models represent significant

Figure 2. Trend [K/10yr] for the global mean annual tem-
perature anomaly predicted by MME and ensemble-mean of
each CMIP5 decadal hindcasts as a function of lead time.
Black dashed line represents the trend in the observation.
Gray shades represent the ranges of one standard deviation
of the ensemble-mean in each hindcasts.

Figure 3. The spatial distribution of temporal correlation coefficients for the annual mean surface temperature anomaly
between reanalysis and decadal hindcasts at forecast years 1 and 2–5 years average. The values show the correlation coeffi-
cients from ensemble-mean for each of models for (a) MME (b) HadCM3, (c) CanCM4, (d) CNRM, (e) MIROC4h, (f)
MIROC5, (g) MRI and (h) CFSv2. Solid black (gray) line represents statistical significance of the correlation coefficients
at 99% (95%) confidence level.
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detrended before calculating these indices to remove the
externally-forced variation [Oldenborgh et al., 2012].
A four-year running average is applied to both indices to
filter out higher interannual frequencies. Figure S3 in Text
S1 shows the variation of the AMO and PDO indices from
observations and the MME hindcast. Both indices show
strong decadal variability. The gray shades in Figure S3
represent the ranges of one standard deviation of the
ensemble mean in each hindcast.
[10] The predictive skill for the AMO and PDO index is

measured by correlation coefficient and root-mean-square
error (RMSE) between the simulations and observation.
Figure 4 shows the correlation coefficient as a function of
lead-time for the MME and the ensemble mean of individual
models. For representing confidence limits of significance,
the correlations and RMSE of the persistence prediction are
included (Figure 4 and Figure S4 in Text S1). Horizontal
lines in each figure represent the confidence level (Figure 4)
and observed standard deviation (Figure S4 in Text S1),
respectively. For the AMO prediction, the correlation coef-
ficients and RMSE of almost all models represent significant

Figure 2. Trend [K/10yr] for the global mean annual tem-
perature anomaly predicted by MME and ensemble-mean of
each CMIP5 decadal hindcasts as a function of lead time.
Black dashed line represents the trend in the observation.
Gray shades represent the ranges of one standard deviation
of the ensemble-mean in each hindcasts.

Figure 3. The spatial distribution of temporal correlation coefficients for the annual mean surface temperature anomaly
between reanalysis and decadal hindcasts at forecast years 1 and 2–5 years average. The values show the correlation coeffi-
cients from ensemble-mean for each of models for (a) MME (b) HadCM3, (c) CanCM4, (d) CNRM, (e) MIROC4h, (f)
MIROC5, (g) MRI and (h) CFSv2. Solid black (gray) line represents statistical significance of the correlation coefficients
at 99% (95%) confidence level.
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skills (Figure 4a and Figure S4a in Text S1). After 1–4 years,
the MME, HadCM3, CNRM and MIROC4h show greater
skill than the persistence prediction. After 3–6 years, most
of the models have greater and significant skill than the
persistence prediction (high correlation than persistence
and smaller RMSE than the persistence and observed
amplitude). The MME represents more skillful results than
most of the individual model predictions over the entire
prediction period.
[11] The prediction skill in PDO index is lower than

AMO, in agreement with recent studies [Oldenborgh et al.,
2012]. The correlation coefficient of the PDO index shows
predictive skill over 90% confidence level in MME and
CanCM4 for 1–4 and 2–5 years. CanCM4 remains being
above 90% during 3–6 years and MIROC5 is far above 95%
for 3–6 years. The MME shows a decrease in skill for lead
times beyond 3–6 years (Figure 4b). The correlation coeffi-
cients of almost all models represent insignificant skills
for the PDO index over the entire period. The correla-
tion coefficient is less than the persistence prediction and
the errors of all models are larger than the observed PDO

amplitude. The MME shows more skillful results than most
of the individual model predictions.

4. Conclusion

[12] We have assessed the CMIP5 decadal hindcast/
forecast simulation performance of seven state-of-the-art
ocean-atmosphere coupled models. Most of the models
produce cooler than observed global mean temperature
during the entire period and overestimate the observed trend
in their hindcasts. All models show high prediction skill for
surface temperature up to 6–9 years over the Indian Ocean,
the North Atlantic and the western Pacific Oceans, while
showing lower predictive skill over the equatorial Pacific
and North Pacific Ocean. The AMO index is relatively well
predicted in all models for the entire prediction period with
a significant skill, while the predictive skill for the PDO
index is relatively low for the entire period.
[13] Although the MME does not outperform all of the

constituent models for every forecast skill metric, it has in
general better forecast quality than the single models for

Figure 3. (continued)
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The PDO may 
generally 
provide only 
weak forcing 
of the 
atmosphere, 
but… 

Kumar et al 2012 



Prescribing “KOE” SST anomaly 
“Projected” Oyashio-Extension Index (OEI) °C 

Smirnov et al. (2014) 

SST Regression 
Outside of  KOE, 
SST anomalies are 
mainly atmosphere 
driven and may NOT 
be appropriate for a 
prescribed SST 
experiment! 

§  Kuroshio-Oyashio Extension (KOE) system is a key component of the 
North Pacific ocean-atmosphere system with connections to the PDO 

Ø  Can an atmospheric GCM capture the atmospheric response to a shift in 
the Oyashio SST front? 

Ø  Is a high resolution model required? 



Experimental design 
§  NCAR’s Community Atmosphere Model, version 5 (CAM5) 

§  25 warm/cold ensembles with different atmospheric initial states 

from control run (taken a year apart) 

§  Two 6-month simulations (1 Nov – 31 Mar): 

1.  High-resolution (HR) – 0.25° 
2.  “Low”-resolution (LR) – 1.0° 

§  Identical initial land, sea-ice and atmospheric initial conditions 

§  Compare the mean difference (WARM – COLD) between the HR 

and LR model responses 

Ø  Compare to ERA-interim (1979-2012) using a lagged regression 

on the POEI 

“WARM”à Northward shift 



Model responses 
(warm-cold) to 
Oyashio 
extension shift 
 
LR model 
SST heating balanced by 
cold and dry air 
advected southwards by 
surface low to east à 
shallow vertical motion 
 
HR model 
SST heating balanced by 
intensified transport of 
heat and moisture 
northwards by storms à 
deep vertical motion 

HR (0.25º) LR (1º) 



Remote response 

oC 

m 

HR LR 



Sensible impact 

HR 

LR 

Precipitation response 

mm day-1  



Summary Slide 

• The PDO is not a physical mode but rather is the 
sum of several physical processes 
• North Pacific SST integrates effects of extratropical 

weather noise and of ENSO via the atmospheric bridge 
•  Re-emergence brings back ENSO-induced anomalies in 

succeeding winters (no summer/fall PDO) 
•  Variations in the KOE provide more persistent SST 

anomalies and may provide a large part (most?) of the 
predictable atmospheric response 



Some Implications 
• Consequences for analysis: Need to differentiate 
PDO-forced signal from PDO-correlated signal 
•  KOE anomalies may provide “decadal” forcing 
•  What other “climate integrators” redden ENSO? 

•  Hydrological (soil moisture anomalies, snowpack) 
•  Paleoclimate proxies 
•  Ecosystems? 

• “Regimes” may have limited predictability 
•  Regime changes randomly driven, due to superposition of 

different red noise processes 

• We need to be careful when we reduce North 
Pacific decadal variability to a single index 


