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fore the onset of seasonal hypoxia, such as in the
northern Adriatic, Pomeranian Bay, and the Ger-
man Bight. Paleoindicators and models from the
northern Gulf of Mexico also support this pattern
of occurrence.

Because eutrophication increases the volume
of organic matter that reaches the sediments,
there is a tendency for hypoxia to increase in
time and space. In systems prone to persistent
stratification, oxygen depletion may also per-
sist. This type of persistent hypoxia accounts
for 8% of dead zones, including the Baltic Sea,
the largest dead zone in the world, as well as
many fjordic systems.

Progression of Hypoxia
Coastal hypoxia seems to follow a predictable
pattern of eutrophication first enhancing the dep-
osition of organic matter, which in turn promotes
microbial growth and respiration and produces a
greater demand for oxygen. DO levels become
depleted if the water column stratifies. In the sec-
ond phase, hypoxia occurs transiently, accompa-
nied bymass mortalities of benthic animals.With
time and further buildup of nutrients and organic
matter in the sediments, a third phase is initiated,
and hypoxia becomes seasonal or periodic, char-
acterized by boom-and-bust cycles of animal pop-
ulations. If hypoxia persists for years and organic
matter and nutrients accumulate in the sediments,
a fourth phase is entered, during which the hy-
poxic zone expands, and as the concentration of
DO continues to fall, anoxia is established and
microbially generated H2S is released. This type
of threshold response has been documented in
theGulf ofMexico (17), Chesapeake Bay (8), and
Danish waters (18).

The critical point in the response trajectory of
an ecosystem to eutrophication is the appearance

of severe seasonal hypoxia. Although some level
of nutrient enrichment is a positive force in en-
hancing an ecosystem’s secondary productivity
and, to a point, fishery yields (19), eutrophication
and seasonal hypoxia favor only benthic species
with opportunistic life histories, shorter life spans,
and smaller body sizes (2).

Ecosystem Responses
The effect of seasonal hypoxia on biomass and
annual secondary production is well documented
(2, 9). What is not well understood is how hy-
poxia affects the habitat requirements of dif-
ferent species or the resilience of an ecosystem.
Pelagic species will experience habitat compres-
sion when hypoxia makes deeper, cooler water
unavailable in the summer (15) or overlaps with
nursery habitat (9). For example, the spawning
success of cod in the central Baltic is hindered
by hypoxic water at the halocline (70 to 80 m),
the depth where salinity is high enough to pro-
vide buoyancy for cod eggs (20). Similar habitat
compression occurs when sulphide is generated
in sediments. In this case, as the redox potential
discontinuity layer is compressed close to the
sediment-water interface, deeper-dwelling spe-
cies, including the key bioturbators that control
pore-water chemistry (21), are eliminated. The
presence of Fe3+ and Mn4+ in the sediment may
buffer the system and reduce the formation of
poisonous H2S. Reduced bioturbation associ-
ated with hypoxia also alters sedimentary hab-
itats by disrupting nitrification and denitrification.
Hence, under hypoxic conditions, instead of ni-
trogen being removed as N2 by denitrification,
ammonia and ammonium together with phos-
phorus are the main fluxes out of reduced sedi-
ments (8, 22) and may stimulate further primary
production.

Habitat compression and the loss of fauna as a
result of hypoxia have profound effects on eco-
system energetics and function as organisms
die and are decomposed by microbes. Ecosys-
tem models for the Neuse River estuary (23),
Chesapeake Bay (24), and Kattegat (25) all show
hypoxia-enhanced diversion of energy flows into
microbial pathways to the detriment of higher
trophic levels (Fig. 2). Only under certain circum-
stances will demersal fish predators be able to con-
sume stressed benthic prey, because their tolerance
to low oxygen concentration tends to be less (~3 to
4ml ofO2/liter) than that of the benthic fauna. Thus,
it is only within a narrow range of conditions that
hypoxia facilitates upward trophic transfer. As the
benthos die, microbial pathways quickly dominate
energy flows. Ecologically important places, such
as nursery and recruitment areas, suffer most from
energy diversion intomicrobial pathways because
hypoxia tends to occur in summer, when growth
and predator energy demands are high.

Missing Biomass
Areas within ecosystems exposed to long periods
of hypoxia have low annual secondary produc-
tion and typically no benthic fauna. Estimates of
the missing biomass in Baltic dead zones that are
now persistently hypoxic are ~264,000metric tons
of carbon (MTC) annually (7) and represent ~30%
of total Baltic secondary production (26). Simi-
larly, estimates for the Chesapeake Bay indicate
that ~10,000 MT C is lost because of hypoxia
each year, representing ~5% of the Bay’s total
secondary production (27). If we estimate that
~40% of benthic energy should be passed up the
food chain in the Baltic (28) and 60% in the
Chesapeake Bay (26), when hypoxic conditions
prevail, 106,000 MT C of potential food energy
for fisheries is lost in the Baltic and 6,000MTC in

Hypoxic system

Human footprint
0 - 1
1 - 10
10 - 20
20 - 30
30 - 40
40 - 60
60 - 80
80 - 100

Fig. 1. Global distribution of 400-plus systems that have scientifically
reported accounts of being eutrophication-associated dead zones. Their
distribution matches the global human footprint [the normalized human

influence is expressed as a percent (41)] in the Northern Hemisphere. For
the Southern Hemisphere, the occurrence of dead zones is only recently
being reported. Details on each system are in tables S1 and S2.
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success of cod in the central Baltic is hindered
by hypoxic water at the halocline (70 to 80 m),
the depth where salinity is high enough to pro-
vide buoyancy for cod eggs (20). Similar habitat
compression occurs when sulphide is generated
in sediments. In this case, as the redox potential
discontinuity layer is compressed close to the
sediment-water interface, deeper-dwelling spe-
cies, including the key bioturbators that control
pore-water chemistry (21), are eliminated. The
presence of Fe3+ and Mn4+ in the sediment may
buffer the system and reduce the formation of
poisonous H2S. Reduced bioturbation associ-
ated with hypoxia also alters sedimentary hab-
itats by disrupting nitrification and denitrification.
Hence, under hypoxic conditions, instead of ni-
trogen being removed as N2 by denitrification,
ammonia and ammonium together with phos-
phorus are the main fluxes out of reduced sedi-
ments (8, 22) and may stimulate further primary
production.

Habitat compression and the loss of fauna as a
result of hypoxia have profound effects on eco-
system energetics and function as organisms
die and are decomposed by microbes. Ecosys-
tem models for the Neuse River estuary (23),
Chesapeake Bay (24), and Kattegat (25) all show
hypoxia-enhanced diversion of energy flows into
microbial pathways to the detriment of higher
trophic levels (Fig. 2). Only under certain circum-
stances will demersal fish predators be able to con-
sume stressed benthic prey, because their tolerance
to low oxygen concentration tends to be less (~3 to
4ml ofO2/liter) than that of the benthic fauna. Thus,
it is only within a narrow range of conditions that
hypoxia facilitates upward trophic transfer. As the
benthos die, microbial pathways quickly dominate
energy flows. Ecologically important places, such
as nursery and recruitment areas, suffer most from
energy diversion intomicrobial pathways because
hypoxia tends to occur in summer, when growth
and predator energy demands are high.

Missing Biomass
Areas within ecosystems exposed to long periods
of hypoxia have low annual secondary produc-
tion and typically no benthic fauna. Estimates of
the missing biomass in Baltic dead zones that are
now persistently hypoxic are ~264,000metric tons
of carbon (MTC) annually (7) and represent ~30%
of total Baltic secondary production (26). Simi-
larly, estimates for the Chesapeake Bay indicate
that ~10,000 MT C is lost because of hypoxia
each year, representing ~5% of the Bay’s total
secondary production (27). If we estimate that
~40% of benthic energy should be passed up the
food chain in the Baltic (28) and 60% in the
Chesapeake Bay (26), when hypoxic conditions
prevail, 106,000 MT C of potential food energy
for fisheries is lost in the Baltic and 6,000MTC in
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Fig. 1. Global distribution of 400-plus systems that have scientifically
reported accounts of being eutrophication-associated dead zones. Their
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influence is expressed as a percent (41)] in the Northern Hemisphere. For
the Southern Hemisphere, the occurrence of dead zones is only recently
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stratification, oxygen depletion may also per-
sist. This type of persistent hypoxia accounts
for 8% of dead zones, including the Baltic Sea,
the largest dead zone in the world, as well as
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poxic zone expands, and as the concentration of
DO continues to fall, anoxia is established and
microbially generated H2S is released. This type
of threshold response has been documented in
theGulf ofMexico (17), Chesapeake Bay (8), and
Danish waters (18).

The critical point in the response trajectory of
an ecosystem to eutrophication is the appearance

of severe seasonal hypoxia. Although some level
of nutrient enrichment is a positive force in en-
hancing an ecosystem’s secondary productivity
and, to a point, fishery yields (19), eutrophication
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with opportunistic life histories, shorter life spans,
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to low oxygen concentration tends to be less (~3 to
4ml ofO2/liter) than that of the benthic fauna. Thus,
it is only within a narrow range of conditions that
hypoxia facilitates upward trophic transfer. As the
benthos die, microbial pathways quickly dominate
energy flows. Ecologically important places, such
as nursery and recruitment areas, suffer most from
energy diversion intomicrobial pathways because
hypoxia tends to occur in summer, when growth
and predator energy demands are high.

Missing Biomass
Areas within ecosystems exposed to long periods
of hypoxia have low annual secondary produc-
tion and typically no benthic fauna. Estimates of
the missing biomass in Baltic dead zones that are
now persistently hypoxic are ~264,000metric tons
of carbon (MTC) annually (7) and represent ~30%
of total Baltic secondary production (26). Simi-
larly, estimates for the Chesapeake Bay indicate
that ~10,000 MT C is lost because of hypoxia
each year, representing ~5% of the Bay’s total
secondary production (27). If we estimate that
~40% of benthic energy should be passed up the
food chain in the Baltic (28) and 60% in the
Chesapeake Bay (26), when hypoxic conditions
prevail, 106,000 MT C of potential food energy
for fisheries is lost in the Baltic and 6,000MTC in
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Fig. 1. Global distribution of 400-plus systems that have scientifically
reported accounts of being eutrophication-associated dead zones. Their
distribution matches the global human footprint [the normalized human

influence is expressed as a percent (41)] in the Northern Hemisphere. For
the Southern Hemisphere, the occurrence of dead zones is only recently
being reported. Details on each system are in tables S1 and S2.
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QUESTION:

Where did these anomalies come from?
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COMMENTS & CHALLENGES

1. strong decadal variability in subsurface O2 from gyre dynamics
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COMMENTS & CHALLENGES

1. strong decadal variability in subsurface O2 from gyre dynamics

2. constrain subsurface dynamics and potential for predictability
by combining models and observations


