

Whales as sentinels in a changing marine environment in the Gulf of Alaska

Dr. Bree Witteveen
Dr. Lei Guo
Kate Wynne

Outline

- The GAP project
- GAP Whales
- Three examples
 - 1. Monitoring of index sites
 - 2. Spatial and temporal trends in habitat use
 - 3. Consumption modeling

The Gulf Apex Predator-prey Project

 Initiated in 1999 to address questions of biologic and economic concern triggered by dramatic declines in Steller sea lions

GAP Whales

- Apex predators that consume massive amounts of prey
- Major population fluctuations
- Recovery is occurring during times of significant environmental change
- Given the breadth of GAP and related data, we now seek to explore the use of whales as sentinels

Monitoring

- Established three VIS
- Each suited for MTL and UTL monitoring
 - Prey data
 - Known importance to foraging whales
 - Near SSL haulouts
 - Commercial fisheries

Monitoring

- Sampling grids
- CTD casts
- Dual frequency backscatter
- Zooplankton samples
- Whale counts, photos& biopsies

Variability Index Sites

- Monitoring of index sites has already shown substantial differences between just two years
- Replicate surveys provide a means of documenting change
- Returning to Marmot Bay in 2014

- Gray Whales
- Humpback Whales
- Fin Whales

Month			Year
	ER	MN	BP
Month	6.7*	40.0***	4.1
Year	16.6***	80.1***	0.5
Month *			
Year	7.8**	67.7***	0.3

Modeling the data

- Grid 5km²
- Variables
 - SST (mean & var)
 - Chl a (mean & var)
 - Depth
 - Month
 - Year
 - Latitude
 - Longitude
 - **-**???

Consumption modeling

- In the CGOA, multiple ecosystem drivers have been suggested
 - Fishing and climate change cannot explain majority
 - Leads to the importance of trophic interactions, including whales

Consumption modeling

- Current ecosystem models estimate baleen whales having small roles
- But...models have low resolution
 - Spatial: regional (GOA) vs. mesoscale (10's to 100's km)
 - Temporal: annual vs. seasonal

The GAP Approach

- Bioenergetic model
- Summer consumption estimates only
- Meso-scale (near-shore Kodiak)
- Example: ATF vs. Humpback whales

Comparing impacts
ATF vs. Humpback whales

- Similarities
 - Population trends
 - Low exploitation rates
- Differences
 - Mobility
 - Seasonality
 - Life span
 - Consumption ratios (Q:B; 6 vs 1.5)

Comparing impacts ATF vs. Humpback whales

- Humpback whales ~ 10.7 kg km⁻²day⁻¹
- ATF ~28.9 kg km⁻²day⁻¹
 - shows great spatial variation
- High for ATF and low for whales?
- Essential to consider in the context of spatial variation

Avg humpback whale consumption = 10.7 kg km⁻² day⁻¹ Avg ATF consumption = 28.9 10.7 kg km⁻² day⁻¹

Avg ATF consumption by spatial strata

Avg ATF consumption & capelin biomass

Next steps

- Use existing framework and hypothetical scenarios
 - Change abundance, diet, prey availability
- Improve whale spatial component using results from habitat model
- How will local energy pathway(s) be modified?
- How much potential impact on SSL?

Looking ahead

- Results have the potential to shed unique insights into roles of whales in marine ecosystems on fine scales
- Diverse methodologies take advantage of GAP's long time-series data
- Design of future studies and data collection
- Use other available data
 - Stable isotopes, dive behavior

Acknowledgements

- UAF-KSMSC
- ADF&G: Matt Foster, Mark Witteveen, Crew of R/V Resolution
- NOAA/NMFS: Bob Foy, Alex De Robertis, Kerim Aydin, Geoff Lang, Megan Fergson
- Dave Kubiak, F/V Mythos
- Jay Stintson, F/V
 Alaskan

- Annie Fiske
- Jordy Tompson
- Casey Clark
- Pingree Family
- Jo Pflaum
- Andrea Croll
- Chris Ford
- Aaren & Brian Ellsworth
- Mike Trussell
- Natura Richardson
- Sophie Piersalowski
- Dana Wright
- Sadie Youngstrom
- Funding through NOAA grants NA04NMF4390158, NA07NMF4390339, NA08NMF4380533, NA09NMF4390339, NA10NMF4390295
- Research conducted under permits: NOAA #1047-1718, 14296 and UAF IACUC 05-20 and 08-25