[ ECOSYSTEM MODELING PREDICTIONS
— HOW RELIABLE ARE THEY?




Models project ecosystem response to changing conditions.

Recognition of the need for ecosystem modeling expanding
— moving from theoretical to applied.



Models increasingly used to support management decisions.



“To fully use ecosystem models [in ecosystem-based fisheries management]
and have their outputs adopted, there is an increasingly recognized need to
address uncertainty associated with such modeling activities.”

(Link et al., 2012)

UNCERTAINTY : How accurately do our models describe the
true dynamics of the ecosystem?



Sources of model uncertainty
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Sources of model uncertainty
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Many types of uncertainty are generic for any natural
resources modeling endeavor



Observational Error

e Leads to parameter uncertainty and structural
uncertainty

Leads to both structural and parametric uncertainty



Structural
Complexity

Uncertainty in which components, parameters and
processes to include.

Often several plausible alternatives.

Phytoplankton Zooplankton
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Biological Model Equations

D I 1.. 1. Phytoplankton < > Zooplankton
evelop equations to

describe how components T Numents/
change with time....

The change in phytoplankton with time:

Physical
Processes

dP _ Natural Grazing by
dt = Growth - | Mortality | ~ |zooplankton| *




Model Complexity
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Models simplify complicated biological processes.
How much detail needed to address your question ?



Biological Model Equations

Growth | =[P] * P *(kITII—N) O’ m O O

E+S E+P

Michaelis-Menten Kinetics

Pmax = max. photosynthetic rate
K = half saturation constant

max

Will need to define many parameters:
Literature, field work and lab
experiments

uptake rate

k [N]

Mathematical equation describes the functional form of
each biological process in the model



Biological Model Equations

Growth | — [p] * Pmax * N
(k + N)
Growth = [P] * Pmax * Nitrate Lim. * Light Lim. *  lron Lim.

J l ] l

Growth = [P] * f(Doublingrate, temp) * f(NO3, NH4, KNO3) * f(PARz, a, C:chl-a)* f(Fe, Kfe)
4 ﬂ ll l
[ |

Growth =[P] * * * * *

Doubling rate  Temp. response Nitrate Limitation Light Limitation Iron Limitation
[0->1] [0->1] [0->1]

-Different species/size classes of phytoplankton have different parameters for each
equation.

-Several functional forms for each process have been used, ranging from simple linear
responses to non-linear forms. Have to choose which to use.




Output uncertainty due to
structural uncertainty
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Suites of models to bound uncertainty.

2010

Climate Model Inter-comparison Project — massive international
undertaking, still not reduced uncertainty.

More model data, observations & process understanding should increase
confidence in a projection — even if uncertainty remains unchanged (Knutt
& Sedlacek, 2012)



Exploring output uncertainty in ecosystem
models due to structural uncertainty

¢ Requires models to be
geographically and temporally
portable.

e Ecosystem modeling efforts tend to
be regionally focused.

e Big challenge to apply a diverse
range of models.



Parameter Uncertainty

¢ Ecosystem models can have tens-hundreds of parameters.

® Sensitivity analysis relates the uncertainty in the output of a model to
¢ different sources of uncertainty in its inputs.

¢ Typically use a Monte Carlo style analysis — thousands of model runs.
® Parameters randomly drawn from specified probability distributions.

® All parameters varied simultaneously.

r

Frequency

Parameter value



Relative Parameter Range
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Output Uncertainty due to Parameter Uncertainty

Mesozooplankton Biomass

451

40+

- ‘Best Guess’ parameter range

‘Small ‘ parameter range

Jan Feb Mar April May Jun July Aug Sept Oct Nov Dec

To constrain models, focus on constraining biological parameters indentified as important.



ANOVA to determine the most important parameters for the diagnostic

output variables of interest.
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Spatial Uncertainty

Despite some biases AOGCMs can represent present climate with some fidelity

Walston, Gibson & Walsh, 2013



Spatial Uncertainty

Global dynamics-> Meso-scale processes important to biology

lanelli et al. 2005

Springer et al., 1996




Spatial Uncertainty

Global Climate Mode
~20° resolution

-Need model with appropriate
horizontal resolution for
fisheries management.

CESM1 temperature climatology

Primary production climatology




Dynamical Downscaling

Dynamically Downscale with
Regional Model
~10km resolution

v

Global Climate Mode
~20° resolution

-Cant run high resolution
everywhere-yet.

\

-Small, high resolution regional
grids for area of interest
nested inside larger courser
resolution grids




Regional Ecosystem Ensemble

Coupled Physical-Biological
Regional Model

Ensemble of
ecosystem projections
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Hermann et al in prep



Ecosystem Projections
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Spatial Uncertainty

Large Crustacean Zooplankton (mgC m-3)

CGCM3 MIROC
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Uncertainty Due to Natural variability

Climate models
do capture the
statistics of
climate
variability
modes

i.e. ENSO, PDO
but can’t be
expected to get
the phase right.

But fine-scale events are
important to biology!
Photo credit: http://cires.colorado.edu



Short term forecasts



Resource Limitations



Summary

® Uncertainties in model structure and parameterizations are often
the main source of uncertainty in predictive model simulations.

® Strategies have been identified for addressing quantifying both
forms of uncertainty.

® Observation and modeling efforts need to be better integrated.

® Communication with end users (managers) important. What can
be predicted ? — with what uncertainty ?— Is intended use for
prediction appropriate?

® Short term, regional, ecosystem forecasts seem feasible, useful
and testable. Long-term forecasts useful for strategic planning.

® Despite uncertainty — individual model runs still useful for
understanding mechanistic processes.



Conclusions

Ecosystem Models can provide
decision makers and stakeholders
with information about a range of
possible outcomes.

Don’t avoid addressing Ecosystem
Model uncertainty just because it
seems difficult — this is an
emerging fields that needs to
accumulate wisdom (NEMoW IlI).

Identifying, characterizing and
communicating sources of
uncertainty as best you canis a
good first step.
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