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Recognition of the need for ecosystem modeling  expanding  
– moving from theoretical to applied. 

Models project ecosystem response to changing conditions. 



Credit: alaska-in-pictures.com 

Models increasingly used to support management decisions. 



“To fully use ecosystem models [in ecosystem-based fisheries management] 
and have their outputs adopted, there is an increasingly recognized need to 
address uncertainty associated with such modeling activities.”  
(Link et al., 2012) 

UNCERTAINTY : How accurately do our models describe the 
true dynamics of the  ecosystem? 
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Link et al., / progress in Oceanography 102 (2012) 102-114 
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Many types of uncertainty are generic for any natural 
resources modeling endeavor 



• Leads to parameter uncertainty and structural 
uncertainty 

Observational Error 

Leads to both structural and parametric uncertainty 



Structural 
Complexity 

Phytoplankton 

Nutrients 

Zooplankton 

Uncertainty in which components, parameters and 
processes to include. 
 
Often several plausible alternatives. 
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Growth + Physical  
Processes - Natural  
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dP 
dt 

  =   

The change in phytoplankton with time: 

Biological Model Equations 

Nutrients 

Phytoplankton Zooplankton 
Develop equations to 
describe how components 
change with time…. 



Models simplify complicated biological processes.  
How much detail needed to address your question ? 

Phytoplankton Model Complexity 
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[P]  *  Pmax  *     N   
                       (k  + N ) 

  = 

k 

Pmax 

Mathematical equation describes the functional form of 
each biological process in the model 

Growth 

Biological Model Equations 

Will need to define many parameters: 
Literature, field work and lab 
experiments 

Pmax      = max. photosynthetic rate 
K = half saturation constant  

Michaelis-Menten Kinetics 



Growth  =    [P]    *             Pmax                        *        Nitrate Lim.              *        Light Lim.           *      Iron Lim.  

-Different species/size classes of phytoplankton have different parameters for each 
equation. 

-Several functional forms for each process have been used, ranging from simple linear 
responses to non-linear forms. Have to choose which to use. 

Biological Model Equations 

Growth  =     [P]    *    f(Doubling rate, temp)    *      f(NO3, NH4, KNO3)    *    f(PARz, α, C:chl-a) *     f(Fe,Kfe) 

Growth   = [P]  *  * * * * 

Doubling rate Temp. response Light Limitation 
[ 0->1 ] 

Nitrate Limitation 
[ 0->1 ] 

Iron Limitation 
[ 0->1 ] 

[P]   *   Pmax              *           N   
                                      (k  + N ) 

  = Growth 
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Linear Mortality  M= hZ    

Quadratic mortality M= hZ2 

Predation (M) = hZq 

q q 
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10-6- 1e-4 

Crel <10-6 

Output uncertainty due to 
structural uncertainty 



Climate Model Inter-comparison Project – massive international 
undertaking, still not reduced uncertainty. 
 
More model data, observations & process understanding should increase 
confidence in a projection – even if uncertainty remains unchanged (Knutt 
& Sedláček, 2012) 
 

Suites of models to bound uncertainty. 



Exploring output uncertainty in ecosystem 
models due to structural uncertainty 

Requires models to be 
geographically and temporally 
portable. 

Ecosystem modeling efforts tend to 
be regionally focused. 

Big challenge to apply a diverse 
range of models. 



Ecosystem models can have tens-hundreds of parameters. 

Sensitivity analysis relates the uncertainty in the output of a model to 
different sources of uncertainty in its inputs. 

Typically use a Monte Carlo style analysis – thousands of model runs. 

Parameters randomly drawn from  specified probability distributions. 

All parameters varied simultaneously.  

Parameter Uncertainty 
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Relative Parameter Range 



Output Uncertainty due to Parameter Uncertainty 

‘Best Guess’ parameter range 

‘Small ‘ parameter range 

To constrain models, focus on constraining biological parameters indentified as important. 

Mesozooplankton Biomass 
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ANOVA to determine the most important parameters for the diagnostic 
output variables of interest. 

Discover which 
parameters you should 
worry about.  
– not always intuitive. 



Walston, Gibson & Walsh, 2013 

Spatial Uncertainty 

Despite some biases AOGCMs can represent present climate with some fidelity 



Springer et al., 1996 

Ianelli et al. 2005 

Global dynamics-> Meso-scale processes important to biology 

Spatial Uncertainty 



-Need model with appropriate 
horizontal resolution for 
fisheries management. 

Global Climate Model 
~2o resolution  

Spatial Uncertainty 

Primary production climatology 

CESM1 temperature climatology 



Global Climate Model 
~2o resolution  

Dynamically Downscale with 
Regional Model 

~10km resolution  
  

Dynamical Downscaling 

Global Climate Model 
~2o resolution  

-Small, high resolution regional 
grids for area of interest 
nested inside larger courser 
resolution grids 

-Cant run high resolution 
everywhere-yet. 



1 Emission scenario  
(A1B =avg CO2 increase) 

Ensemble of  
ecosystem projections 

Regional Ecosystem Ensemble 

Coupled Physical-Biological  
Regional Model 

MIRCOM-M 

CCCMA 

ECHO-G 

Hermann et al in prep 
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CGCM3 MIROC ECHOG 

“Present” 
(2003-2012) 

“Future”  
(2031-2040)  
w.r.t. present 

Spatial Uncertainty 
Large Crustacean Zooplankton (mgC m-3) 



Photo credit: http://cires.colorado.edu 

Uncertainty Due to Natural variability 
Climate models 
do capture the 
statistics of 
climate 
variability 
modes 
i.e. ENSO, PDO 
but can’t be 
expected to get 
the phase right. 

But fine-scale events are 
important to biology! 



Short term forecasts 
 



Resource Limitations 



Summary 
Uncertainties in model structure and parameterizations are often 
the main source of uncertainty in predictive model simulations.  

Strategies have been identified for addressing quantifying both 
forms of uncertainty. 

Observation and modeling efforts need to be better integrated. 

Communication with end users (managers) important. What can 
be predicted ? – with what uncertainty ?– Is intended use for 
prediction appropriate? 

Short term, regional, ecosystem forecasts seem feasible, useful 
and testable. Long-term forecasts useful for strategic planning. 

Despite uncertainty – individual model runs still useful for 
understanding mechanistic processes. 



Conclusions 
Ecosystem Models can provide 

decision makers and stakeholders 
with information about a range of 
possible outcomes. 

Don’t avoid addressing Ecosystem 
Model uncertainty just because it 
seems difficult – this is an 
emerging fields that needs to 
accumulate wisdom (NEMoW II). 

Identifying, characterizing and 
communicating sources of 
uncertainty as best you can is a 
good first step.  
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