Moran et al 2008

Modelling Change

Beth Fulton, Penny Johnson, Rebecca Gorton, Asta Audzijonyte, Gary Griffith 2014

CSIRO WEALTH FROM OCEANS FLAGSHIP

www.csiro.au

Model flexibility

Model structures that allow for multiple composition expression

Revise processes

- Models reformulated with more knowledge
 - Multiple "errors" look like "truth"
 - "Right for right reasons" in case it influences dynamic shifts

Go global

 Take existing model structures & apply variant on global scale

Allow for evolution

SEAP background

- SE Australia = hotspot of physical change
- Adaptation program (risk analysis, simulations etc)

RCP context

- RCP 8.5, 4.5 and 3
- GCM derived forcing
 - Currents (horizontal & vertical)
 - Temperature, Salinity, pH, oxygen
- Extreme events (e.g. storms, pathogens)
- Changed level of other sectors (shipping, catchments, development aggregate mining etc.)

Meinshausen et al (2011)

Forcing

Acclimation

Forage and density dependent geographic distributions

 Slow acclimation of parameterisation (to physical conditions; capped at observed laboratory & physiological ranges)

New optima = Old optima + (Gap between optima and new state) * rate of shift

Evolution & Biodiversity Turnover

- Size based feeding & reproduction
- Physiological rates, reproduction (and nutritional value) environmentally impacted
- Survivors reproduce (with heritability and stochasticity) so population's distribution of parameters evolves through time

Seeing 1-10cm drop in mean adult size over 50yrs

Human Industries

- Dynamic social and economic driven effort allocation decision model
 - can shift ports, trade quota, sell up, invest etc
 - Full MSE (adaptive management loop complete)

One-way coupled marine and coastal industries model (human pressure along the coast line)

Management Options

Objective remains sustainability; >100 options explore

Class of management action

Governance: centralised, cross border co-op, "go it alone"

Spatial management: static, shifting, closures (10%, 30%, 75%)

Integrated management

Monitoring schemes: annual, periodic, per-state, coordinated

Management delays: short, long

Stock enhancement (including stocking densities for aquaculture)

Markets: classical, diversified

Costs: low, high (fisheries and aquaculture)

New fisheries (e.g. mesopelagics, immigrant species, biofuel)

Changing pressure (including tech creep, gear switching, compliance levels)

Tradeoffs – conservation & industry

Adaptation

No acclimation

- Vertebrates suffer
- Some invertebrates explode (or crash)

Cumulative impacts

- **Industries interfere**
- End up with weedy system

Integrated management

- Can deliver on sustainable objectives
- Social licence required for delivery

Stock status

Not as dire with acclimation

- No acclimation
 - Squids boom/bust
 - Jellies & non-calcifiers win
 - Weedy & pelagic
 - Fast turnover system
- With acclimation & evolution
 - While system copes, little gross change (some turnover in dominant spp)
 - Tipping point exists

Biological adaptation: Shifting size & location

Biological adaptation: Facilitators of change Large sharks

Biological adaptation: Facilitators of change Large sharks

Piscivorous fish

Demersal fish

Squid

Forage fish

Mesopelagics

Large zooplankton

Benthic invertebrates

Small zooplankton

Bacteria

Large phytoplankton

Small phytoplankton

Detritus

Macrophytes

Biological adaptation: Facilitators of change Large sharks

Piscivorous fish

Demersal fish

Squid

Forage fish

Mesopelagics

Large zooplankton

Benthic invertebrates

Small zooplankton

Bacteria

Large phytoplankton

Small phytoplankton

Detritus

Macrophytes

Social & economic change

 Compositional change (interaction ecology, value, ease of access)

 Cost structures shift (extreme events exposure, sunk costs, transit costs)

Differential outcomes across jurisdictions (& fleets)

- VPUE outcome variable
- Employment halvedLarger vessels more robust

>300%

Barriers to adaptation

- Biological and ecological
 - distribution, composition & productivity change; thresholds
- 2 Behavioural, cognitive and social
 - flexibility & personality; intuition & perception; cultural influence
- **3** Governance and regulation
 - supportive vs constraints & delays (hardship potential)
- 4 Economic and markets
 - compound barriers; larger operators typically have more capacity
- 5 Technological
 - facilitate change vs lock in maladaptive behaviour; info access
- 6 Scientific
 - remaining gaps; more change focus needed

Barriers to modelling & implementation

- Data gaps
 - physiological adaptation of higher trophic levels
 - human responses (e.g. institutional dynamics)

Social licence

Summary

- Real world systems are non-stationary
- Models and management often based on equilibrium (or at least stationary parameterisations)
- Get a different picture if include acclimation
- Many of ecological key players are not focus of regulation
- Most effective management = integrated & adaptive
- Barriers to adaptation
 - Biology copes through until 550+ ppm
 - Human barriers to adaptation = major blocks

Thank you

CSIRO Division of Marine and Atmospheric Research

Beth Fulton Head of Ecosystem Modelling

t +61 3 6232 5018

E beth.fulton@csiro.au

w www.csiro.au

CSIRO WEALTH FROM OCEANS

www.csiro.au

