

Models linking climate to fish: Habitat Shifts in North Pacific

Elliott L. Hazen, Steven Bograd, Salvador Jorgensen, Ryan Rykaczewski, Dave Foley, Scott Shaffer, John Dunne, Ian Jonsen, Daniel Costa, Larry Crowder, and Barbara Block

UCSC – Cooperative Institute for Marine Ecosystems and Climate NOAA Southwest Fisheries Science Center, Environmental Research Division elliott.hazen@noaa.gov

Marine Top Predators

- Integrate over food-web dynamics
- Long-lived, buffer environmental variability
- Key indicators of climate variability and change
- Face serious conservation issues

Technical Approach: Multiple Tag Platforms

Top Predators in the Pacific

- What is the physical forcing? How persistent/recurrent?
- Can we classify by ecological function?

• Where will the hot spots be strike the future?

TURTLEWATCH

TO Where will the hot spots to be strike the first th

Climate Change & Top Predators

- Population effects reproductive success / failure
- Food web effects reduced density of prey, change in patchiness
- Phenology effects timing of migration, reproduction
- <u>Spatial effects</u> loss of habitat, range or distribution

Climate Change Effects

(A) Species ecology

Climactic niche requirements Dispersal capacities

Effects of climate change

Species range changes Biodiversity scenarios Ecosystem functioning

Methods: habitat models

- Generalized additive models (GAMs) for each species using bathymetry and quarterly means of remotely sensed SST and Chl-a from 2000-2009.
- We predicted change in core habitat as a scenario driven exercise using GFDL's ESM 2.1 under A2:
 - Compared spatial shifts from 2001 to 2020 vs 2081 to 2100
 - Monthly, yearly, and 5 year running mean time series of habitat
- Core habitat for the time series was defined as top 25% of each species potential habitat.
- Bootstrapped confidence intervals to measure process error in the modeling framework.

Species Distribution Modeling

Distribution / behavioral data e.g. sightings data, tag data, foraging events

Statistical models

 $g(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$

e.g. Generalized Additive Mixed Models

Probability of occurrence predicted from environmental covariates

Methods: GFDL ESM 2.1

An atmosphere-ocean general circulation model is coupled to an ocean biogeochemical model and forced with the **IPCC** emissions scenario **A2**.

Atmosphere: NOAA-GFDL AM2 (Anderson et al., 2004);

2° x 2.5° horizontal resolution

Ocean: NOAA-GFDL MOM 4.1 (Modular Ocean Model; Pacanowski and

Griffies, 1999); 1° x 1° horizontal resolution

Biology: NOAA-GFDL **TOPAZ** (Tracers of phytoplankton with Allometric

Zooplankton) which includes N, P, Si and Fe cycles and three

phytoplankton classes (Dunne et al., 2007).

Chlorophyll & SSI: 2001 to

2010

Winter

Summer

Hazen et al. 2012 Nature Climate Change

Changes in Chi & SSI: 2001-

2100

Summer

Hazen et al. 2012 Nature Climate Change

Species Richness: 2001 to 2010

Δ Species Richness: 2001-2100

2001-2020 vs 2081-2100

Core habitat: 2001 to 2100

Hazen et al. 2012 Nature Climate Change

Caveats

- Predictions are scenarios, not actual "habitat" – tagged populations, not species
- Coastal processes are not well resolved in broad-scale climate prediction models

Conclusions & Future Directions

- Seasonal patterns in diversity gain / loss e.g. around the transition zone
- Up to 35% changes in habitat use by frequency between 2001 and 2100
- Can use nested / downscaled models to get a better representation of coastal processes
- We should continue to use top predators as ocean sentinels but also should proactively plan for adaptive management

Future Directions

 Use satellite data to model species and risk in near real time

Multiple risks:

- ship strikes
- bycatch / entanglement,
- noise
- wind / wave power

Data needs for top predators

Mechanistic linkages from environment → life history

Sponsors and Supporters

TOPP Collaborators and Data Holders

Remote sensing data:

- Aviso/CNES (altimetry)
- NASA/GSFC (SeaWiFS ocean color)
- NOAA/NODC & JPL (SST)
- UCSD/SIO (Bathymetry)

Future Research Directions

 Use satellite data to model species and risk (e.g. blue whales & ship strikes) in near real time

Future Research Directions

Hazen et al. in prep