Effects of Climate Change on the World's Ocean March 2015, Santos

RIGHTHERE, RIGHTHERE, NOW Timing is Everything? – Climate Control on the North Pacific Ecosystem Phenology

Sanae Chiba¹, M. Toratani², S. Yasunaka¹, T. Hashioka¹, S. Batten³, H. Sugisaki⁴

¹JAMSTEC, ² Tokai University² ³ Sir Alister Hardy Foundation for Ocean Science, ⁴ Fisheries Research Agency, Yokohama, Japan

Cherry blossom in Tokyo, March 20th 2015

Global Climatology of Phytoplankton Phenology

Seasonal Mixed Layer Process and Onset of Spring Bloom

Future Projection of Phytoplankton Phenology

Earlier when Warmer in mid-high latitudinal region

5 % level) are plotted.

(Henson et al. 2013, Biogeoscience)

Why Does Plankton Phenology Matter? Trophic Match-Mismatch

Timing of spring bloom and the Eastern Scotian Shelf outer banks haddock fishery (Platt et al. 2003)

RIGHT HERE, RIGHT HERE' NOW! Outline

1. Phenological shift in LTL and its link to HTL in the Western North Pacific: study using long-term Zooplankton data.

2. New ocean provinces in the North Pacific based on the phytoplankton seasonality

Global Comparison of Zooplankton Time-series: SCOR WG125 (2005~2011)

Advantages in using zooplankton time-series

- Samples are preserved for decades
- Biological, chemical compositions of Zooplankton tell us environmental conditions integrated through seasons.

Global Comparison of Zooplankton Phenology in the SCOR WG 125 Special Issue of Progress in Oceanography (Mackas et al., 2012)

Temperature dependence of Zooplankton Phenology

"The most common phenology correlate is water temperature during and before the growing season, and the most common phenologic response to temperature is.."

"Earlier when and where warmer"....

Long-term Study in the Western North Pacific Sets Zooplankton Phenology (1960s-1990s)

Odate Collection Data sets

Long-term Study in the Western North Pacific Ontogenetic vertical migration of Neocalanus Copepods

Neocalanus species: mesopelagic spawning

=> Peak biomass is likely controlled by seasonal phytoplankton availability

Long-term Study in the Western North Pacific

H: Early bloom (longer bloom season) was "Good Match" For Neocalanus *reproduction in the 90s.*

Trophic Link Study using zooplankton Nitrogen Stable Isotope

Long-term Study in the Western North Pacific Nitrogen Stable Isotope Analysis

(Chiba 2012, NPAFC Tech. Rep.)

Long-term Study in the Western North Pacific Nitrogen Stable Isotope Analysis Link to HTL (Pink Salmon)

BIOMASS

δ¹⁵N

(Chiba 2012, NPAFC Tech. Rep.)

Summary Plankton Phenology and Trophic Good Match in WNP during the 1990s AL-PDO Warming Good Match Good Match

RIGHT HERE, RIGHT HERE,

Outline

2. New ocean provinces in the North Pacific based on the phytoplankton seasonality

New Ocean Paradigm on Its Biogeochemistry, Ecosystem and Sustainable Use

To develop **a new ocean provinces** based on ecological and biogeochemical properties

JSPS Grant-in Aid for Scientific Research FY2012-2016

科学研究費補助金 新学術領域研究 「新海洋像:その機能と持続的利用」

PI: Ken Furuya University of Tokyo

NEOPS New Ocean Provinces

GOAL: Better management of Marine Ecosystem Services

NEOPS New Ocean Provinces based on the Seasonal Chl a Variation

NEOPS Phytoplankton Provinces: 10 yrs Climatology in Seasonal Timing

Autumn Peak Chl a

Seasonal Chl a Amplitude

Spring Peak Timing (JD)

Autumn Peak Timing (JD)

Note: Peak JD Range was examined for only clusters with seasonal variation (CV > 0.1)

NEOPS New Ocean Provinces: Dynamic Boundary

NEOPS New Ocean Provinces: Boundary Shift

NEOPS New Ocean Provinces: Boundary Shift

Interannual Variation in Phytoplankton Phenology in the Boundary Regions

NEOPS New Ocean Provinces: Climate change and Boundary Shift

Which areas are more susceptible to which climatic systems?

NEOPS New Ocean Provinces: Climate change and Boundary Shift

Which areas are more susceptible to which climatic systems?

NEOPS New Ocean Provinces: Climate change and Boundary Shift

Ongoing analysis:

- Comparison to BGC Provinces
- Comparison to zooplankton distribution

Recommendation to Global Ocean Observation of Phenology

FOO (Framework for Ocean Observing)

A Framework for Ocean Observing. By the Task Team for an Integrated Framework for Sustained Ocean Observing, UNESCO 2012, IOC/INF-1284 rev., doi: 10.5270/OceanObs09-FOO

Recommendation to Global Ocean Observation of Phenology

1. Zooplankton δ^{15} N as an EOV for Trophic Link (incl. phenlogical match-mismatch)

> * Amino acid level δ^{15} N is the best, because it can detect variation in Trophic level regardless of δ^{15} N variation in phytoplankton and source water (Chikaraishi et al., 2010, Limnology and Oceanography: Method)

2. Observation in better spatial and temporal resolution in the boundary regions of the Phytoplankton Province.

TIMING IS EVERYTHING

Doctor, there's a chronometer in the arboretum that ceased working a year ago. It has been correct twice a day ever since. So you see, I do not doubt that you, too, can be...