Different responses to water temperature in two distinct groups of Pacific cod (Gadus macrocephalus) inhabiting around Japan

innabiting around Japan

Ayako Suda¹, Y. Suzuki-Ohno¹, N. Nagata¹, M. P. Sato¹, Y. Narimatsu², M. Kawata¹

¹Graduate School of Life Sciences, Tohoku University ²Tohoku National Fisheries Research Institute

Effects of climate change

Shifting distribution Changing migration patterns

Perry et al. (2005), Dulvy et al. (2008), Simpson et al. (2011)

Impacts in fisheries

- Increasing tropical fish catch Cheung et al. (2012)
- Changes in fishing area Pinsky & Fogarty (2012)

Animal distribution and environment

Many factors are involving to determine current animal distribution

Historical factors and natural selection cause creation of population structure

Coastal taxa

Oceanic taxa

Factors prevents creation of population structure

No obvious physical barriers in ocean

- Pelagic larvae Gaylord and Gaines (2000)
- Passive dispersal Thorson (1950)
- Long distance migration

Roughgarden et al. (1988)

Weak genetic structure due to high gene flow

Local adaptation is rare Conover at al. (2006)

Pacific cod Gadus macrocephalus

- Widely distributed in the North Pacific
- Mainly ranging along the continental shelf
- The most important species in bottom trawling along the Pacific coast of the northern Japan Narimatsu et al. (2010)

Pacific cod Gadus macrocephalus

Pacific cod Gadus macrocephalus

Population structure using nuclear markers

- Southern population has a dominant haplotype
- Gene flow is limited between South and North

Suda et al. (unpublished)

Objectives

Ecological data

Estimation of optimum environment using statistical relationship between catch data and environmental data, water temperature.

Genetic data

Population genomics approach using RAD-seq

- Population structure
- Signature of natural selection, Local Adaptation

To reveal factors creating population differentiation and to evaluate adaptability to climate change

Objectives

Ecological data

Estimation of optimum environment using statistical relationship between catch data and environmental data, water temperature.

Genetic data

Population genomics approach using RAD-seq

- Population structure
- Signature of natural selection, Local Adaptation

To reveal factors creating population differentiation and to evaluate adaptability to climate change

Statistical analysis using GAM

General additive model (GAM)

Non-linear relationship between Env. factor and response factor

Distribution data

Cod catch from 1993–2012 (data in winter season)

*bottom trawling dataset published from the Fisheries Research Agency

Environmental data

Bottom temperature where cod were caught

*Japan Coastal Ocean Predictability Experiment (Miyazawa et al., 2009)

Study area

Three oceanic areas and the Southern area was independently analysed.

Relationship between temp. and cod catch

Relationship between temp. and cod catch

Different water responses at each ocean area,

Relationship between temp. and cod catch

Different water responses at each ocean area, Inhabiting in different temperature condition?

Objectives

Ecological data

Estimation of optimum environment using statistical relationship between catch data and environmental data, water temperature.

Genetic data

Population genomics approach using RAD-seq

- Population structure
- Signature of natural selection, Local Adaptation

Restriction-site associated DNA (RAD) sequencing

- A technique using restriction enzyme to cut off DNA and sequence both side of restriction enzyme site using NGS
- Possible to obtain a high number of Single Nucleotide Polymorphism (SNP) in genome-wide, advantage in non-model organisms
- Possible to find candidate genes that are under selection, responding to env. change

Collection site and sample number

Site	Sample Number
Sakaiminato	23
Noto	3
Sanpoku	15
Nikaho	19
Otaru	10
Monbetsu	7
Rausu	4
Doto(North)	19
Doto(South)	14
Tohoku — 10 sites	120

A total of 19 sites 234 samples

Population structure and phylogenetic tree

Genome-wide analysis showed,

- The southern individuals have different genetic structure (K=2)
- More detailed structure with respect to water bodies (K=3)

Population structure and phylogenetic tree

- The southern population also phylogenetically different from others
- Gathered clades in each oceanic area

Detailed population structure can be observed with a high number of SNPs

Population structure and Natural selection

- The southern individuals clearly differ from others
- High number of SNPs give more detailed population structures than ordinary nuclear markers

Lositan Antão et al. (2008)

Bayenv2 Günther & Coop (2013)

Multiple analyses are necessary to avoid false positive outliers

Outliers found in the southern population

60 outliers with the comparison of South and North population

- Signature of selection in southern population
- Necessary to identify loci correlate to environmental factors

Outliers found in the southern population

60 outliers with the comparison of South and North population

Identifying accurate outliers lead to reveal factors associating with local adaptation

Overall summary

Ecological data

Analysis of catch and env. data showed,

 The southern population may live in different temperature condition, possibly at higher temperature than other regions.

Genetic data

Genome-wide SNPs analysis,

- The southern population has clearly different genetic background.
- Detailed population structure was able to observe with many SNPs.
- Some SNPs showed signature of natural selection

More samples are required for further analysis

Acknowledgements

- Tohoku National Fisheries Research Institute
- FRA RV crews of "Wakataka Maru"
- JAMSTEC Hyper dolphin team
- JAMSTEC RV crews of "Natsushima"

This study is supported by TEAMS: Tohoku Ecosystem-Associated Marine Sciences and

Tohoku University Institute for International Advanced Research and Education

Acknowledgements

- Tohoku National Fisheries Research Institute
- FRA RV crews of "Wakataka Maru"
- JAMSTEC Hyper dolphin team
- JAMSTEC RV crews of "Natsushima"

Special Thanks to PICES for supporting travel costs to Brazil

