3rd Climate Change Symposium

Simulating the variability of Eastern Boundary Upwelling over the past millennium

Nele Tim, Eduardo Zorita, Birgit Hünicke, Kay-Christian Emeis

Motivation

- influence of external forcing on upwelling
 - Eastern Boundary Upwelling Systems
 - Arabian Sea
- Bakun hypothesis:
 - intensified upwelling due to increasing greenhouse gas concentrations
- analysis of the past millennium and the 20th century

Outline

- annual cycle
- drivers of upwelling
- timeseries and trends of upwelling
- influence of the Asian Monsoon
- connection of upwelling regions

Data

MPI-ESM CMIP5

- coupled: MPIOM, ECHAM6, HAMOCC global
- historical MR: 1850 2005, T63/L90,0.4/L40
- past1000 P: 850 1850, T63/L49,1.5/L40
- 3 realizations: same model, same forcing, different initial conditions
- upwelling in Benguela, Peru, California, Morocco, Arabian Sea

Annual cycle

annual cycle is modelled realistically

pressure gradient drives upwelling

contact: nele.tim@hzg.de

Time series of upwelling

1700 1850 1850

1900

1950

year

2000

contact: nele.tim@hzg.de

1100 1300 1500

Histogram of correlations between realizations

low correlations between realizations

Correlations with low-pass time filter

correlations stay low even with low-pass time filter

Arabian upwelling and Monsoon

correlation of sea level pressure with upwelling and the Asian Summer Monsoon show differences

Global skin temperature

SST variability is more strongly externally driven in the tropical belt but low in upwelling regions

Correlations between upwelling regions

correlations between upwelling of the different regions are low, except for Peru-California

Summary

- MPI-ESM CMIP5 simulation realistically represents the upwelling and its drivers
- upwelling in all regions is driven by the sea level pressure gradient between land and ocean
- upwelling is not driven externally in the past millennium in this simulation
- upwelling do not show a clear trend in the past millennium except for the Arabian sea in the past1000 simulation
- the Asian Summer Monsoon impacts the Arabian upwelling but the relation is not direct in this simulation
- the SST is driven more strongly externally in the tropical belt
- correlations are low between the upwelling regions except for Peru and California

Thank you for your attention

Tim, N., Zorita, E., Hünicke, B., Yi, X. and Emeis, K.-C. (2015): Imprint of external climate forcing on coastal upwelling systems over the past millennium. Submitted to Nature Geoscience, under review.

contact: nele.tim@hzg.de