Some Steps Towards Climate-Ready Management of U.S. Fisheries

Roger Griffis¹, Wendy Morrison¹, Mark Nelson¹, Jon Hare², Valerie Termini³

at all the party

FISHERIES

¹NOAA National Marine Fisheries Service, Silver Spring, MD, USA. ²NOAA National Marine Fisheries Service, Narragansett, RI, USA ³California Ocean Protection Council, California, USA

Setting the Stage

- Climate change will profoundly impact marine and coastal ecosystems.
- Fish stocks will change.
- Industries and coastal communities will be effected.
- Growing demands, requirements and opportunities for action.
- NOAA Fisheries Service is assessing needs and taking action.
- More action is needed.
- Many challenges and opportunities.
- Rapid learning is critical: Collaborations welcome.

How Get to Climate-Ready Fisheries Management?

1. Assess vulnerabilities stocks, fisheries, communities

2. Transform our science enterprise

to support climate-informed decisions

3. Build Flexibility and Adaptability In management approaches (e.g. Catch Share Management)

Assess Fish Stock Vulnerability

Goals:

- Determine which stocks are vulnerable and why in all US regions.
- Identify data gaps and research priorities.

First implementation:

- US Northeast Large Marine Ecosystem.
- 82 species

http://www.st.nmfs.noaa.gov/ecosystems/climate/activities/assessing-vulnerability-of-fish-stocks

NOAA FISHERIES

Fish Stock Climate Vulnerability Assessment

Fish Stock Climate Vulnerability Assessment

Climate Exposure

http://www.esrl.noaa.gov/psd/ipcc/ocn/ccwp.html

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 6

5 Point Tally Scoring System

For each attribute:

- experts assign 5 tallies within the 4 scoring bins
- experts express uncertainty in their score
- experts estimate data quality (0= no data, 1= expert knowledge, 2= limited data, 3 = good data)

Low	Moderate	High Very High			
	5				
Expert Scores - Moderate uncertainty					
Low	Moderate	High Very High			
		-	2		
		3	2		
		3	2		
Expert So	cores - Higher	3 uncertaint	2 Ty scenario		

2

1

Example:

1

1

Sensitivity and Exposure Scoring Rubric

Attribute Score = Weighted Average of Tallies

Sensitivity or Exposure Component Score =

- Very high = # attribute scores ≥ 3.5
- High = # attribute scores \geq 3.0
- Moderate = # attribute scores \geq 2.5
- Low = rest

Vulnerability = Sensitivity and Exposure = VH + VH = VH

Results

Overall

- Exposure to climate change in Northeast U.S. is high to very high
- Sensitivity higher for diadromous and shellfish; lower for groundfish and pelagics

Results

Spanish Mackerel

Bootstrap Expert scores:

- 0 Very High
- 3 High
- 97 Moderate
- 0 Low

Spanish mackerel - *Scomberomorus maculatus* Overall vulnerability rank = Moderate Sensitivity = Low Exposure = Very High Data Quality = 0.79

Scomberomorus maculatus	Expert Scores	Data Quality	Expert Scores Plots (Portion by Category)
Stock Status	1.9	2.2	
Other Stressors	2.1	1.8	
Population Growth Rate	1.7	2.6	
Spawning Cycle	2.4	2.8	
Complexity in Reproduction	2.1	2.6	
Early Life History Requirements	2.3	1.2	
Sensitivity to Ocean Acidification	1.1	2.2	
Prey Specialization	1.3	2.8	
Habitat Specialization	1.6	3.0	
Sensitivity to Temperature	1.3	3.0	
Adult Mobility	1.3	2.4	
Dispersal & Early Life History	2.0	2.6	
Sensitivity Score	Lo	w	
Sea Surface Temperature	4.0	3.0	· · · · · · · · · · · ·
Variability in Sea Surface Temperature	1.0	3.0	
Salinity	3.1	3.0	
Variability Salinity	1.2	3.0	
Air Temperature	4.0	3.0	
Variability Air Temperature	1.0	3.0	
Precipitation	1.2	3.0	
Variability in Precipitation	1.3	3.0	
Ocean Acidification	4.0	2.0	
Variability in OA	1.0	2.2	
Currents	2.0	1.0	
Sea Level Rise	1.2	1.5	
Exposure Score	Very	High	
Overall Vulnerability Rank	Mode	erate	

How Get to Climate-Ready Fisheries Management?

1. Assess vulnerabilities stocks, fisheries, communities

2. Transform our science enterprise

to support climate-informed decisions

3. Build Flexibility and Adaptability In management approaches (e.g. Catch Share Management)

Draft National Climate Science Strategy

GOAL	Increase the production, delivery and use of climate-related information to support NOAA Fisheries and stakeholder decisions.
CONTENT	Identifies 7 key objectives to meet NOAA Fisheries information requirements for resource management in a changing climate.
INTENDED USE	Help guide development of NOAA Fisheries science enterprise at national to regional levels (e.g., regional action plans).

Strategy designed to meet climate-related information requirements across mission areas

Draft Climate Science Objectives

1. Climate-Informed Reference Points

2. Robust Management Strategies

3. Adaptive Management Processes

4. Robust Projections of Future Conditions

5. Information on Mechanisms of Change

6. Status, Trends and Early Warnings

7. Science Infrastructure to Deliver Actionable Information

Interdependent

How Get to Climate-Ready Fisheries Management?

1. Assess vulnerabilities stocks, fisheries, communities

2. Transform our science enterprise to support climate-informed decisions

3. Build Flexibility and Adaptability In management approaches (e.g. Catch Share Management)

Climate Smart Fisheries Management Will Need to be *Flexible* and *Adaptable*

IT IS NOT THE STRONGEST OF THE SPECIES THAT SURVIVES, NOR THE MOST INTELLIGENT. IT IS THE ONE THAT IS MOST ADAPTABLE TO CHANGE.

- CHARLES DARWIN

B-metro.com

U.S. Catch Share Programs

In the United States, approximately

33% (160 out of 478 stocks)

of federally managed fish stocks are managed under catch share programs.

Do Catch Shares Improve Flexibility?

Yes and No. It depends on Program Design

Designs that limit flexibility:

- Quotas distributed by area (= limited flexibility to follow fish)
- Geographic landing requirements (=limited spatial flexibility)
- Single species permits (=limited flexibility to shift species)
- High entrance costs or quota costs (=limited flexibility to shift species)

Do Catch Shares Improve Flexibility?

Yes and No. It depends on Program Design

Actions that increase flexibility:

- Incentives to match catches to abundances as they change (i.e. flexibility to avoid "choke" species)
- Quota transferability provides opportunity for fishermen to build a portfolio of harvest privileges & decrease income risk
- Distribute quotas to communities

In the Bering Sea, halibut is a "choke" species in the groundfish fishery.

Abbott et al. 2015. Land Economics

Yes: catch share programs can create incentives to change fishing behavior to reduce bycatch of a limiting species.

Do Catch Shares Improve Flexibility?

Take Home Messages

Climate change will profoundly impact marine and coastal ecosystems.

- Determining vulnerabilities is key first step to:
 - Prioritize resources
 - Advance dialog about climate change
- Increasing production and use of climate-related science is critical to climate-ready fisheries management.
- Need flexible and adaptable management.
- Testing and collaborations welcome and needed.

