Cyanobacteria in future climate conditions: time to project diversity and function, not only biomass?

Catherine Legrand Linnæus University Kalmar, Sweden

www.lnu.se/eemis www.umf.umu.se/english/ecochange/

SciLifeLab

Kristofer Bergström Frida Eriksson Hanna Farnelid Emil Fridolfsson Franziska Klotz Ivan Ivanov Elin Lindehoff Markus V. Lindh Anders Månsson Emmelie Nilsson Martin Olofsson

The Swedish Research Council Formas Committed to excellence in research for sustainable development

Michele Casini Hanna Mazur-Marzec Per Larsson Agneta Andersson Jarone Pinhassi Catherine Legrand

> www.lnu.se/eemis www.umf.umu.se/english/ecochange/

Linnæus University Ecology and Evolution in Microbial model Systems

Centre

What do CYANO-models need?

1- Response of HAB to future CC *(physiology, life cycle, adaptation???)*

2- Temporal and spatial dynamics *(Who is there, how much, where and when?)*

3-Trophic interactions *(grazer-prey-competitor incl. heterotrophic bacteria)*

4-Biotic/chemical interactions *(bioactive compounds)*

Colonial cyanobacteria

Filamentous cyanobacteria (N_2 -fixers)

Picocyanobacteria

Lake Erié

Baltic Sea Sw Pacific Ocean

Trichodesmium bloom

- Peptide Hepatotoxins (Microcystins and Nodularin)
- **Neurotoxins**
- **Cylindrospermopsin**
- β-N-methylamino-L-alanine (BMAA)
- Lipopolysaccharide Endotoxins
- Other NR peptides (spumigins, aeruginosins, anabaenopeptids, unknown)

Nodularin and other NR-peptides

The Baltic Sea

Baltic Sea Region

German

 $10^{\circ}E$

VANJA II

Conley et al. 2011

 $20^{\circ}E$

<u>း</u>
ချီး

Eutrophication

Hypoxia anoxic Batton Water, Autumn 2011

Conley et al. 2011

Climate change

Precipitations

2 3 4 5 6 \mathbf{z} α 10 11.1 $12 \t13$

х \overline{z} в. 5 6 7 \mathbf{z} $9 \t10 \t11$

 $12 \t13$

Meier et al. 2006

The Baltic Sea is warming faster than other seas

Figure 7. Trend of SST- Anomalies of the annual averages of the Baltic referring to the long-term means $1990 - 2012$.

Aland Sea

Ecology and Evolution in Microbial model Systems

Phytoplankton increased in the Åland Sea from 1979 to 2008

Significant trends ($p<0.05$) in environmental (squares) and zooplankton parameters (triangles) in the Åland Sea from 1979 to 2011, and in phytoplankton (circles) from 1979 to 2008.

Suikkanen et al. 2013

Chlorophyll a

Phytoplankton

Mild winter favours dinoflagellates over diatoms in spring

CLIMATE

Blooms Like It Hot

Hans W. Paerl¹ and Jef Huisman² Science 2008

Tutrient overenrichment of waters by lakes to stratify earlier in spring and destratify

A link exists between global warming and the worldwide proliferation of harmful cyanobacterial blooms.

LETTERS

Edited by Jennifer Sills

Hans W. Paerl,^{1*} Wayne S. Gardner,² Mark J. McCarthy,² Benjamin L. Peierls,¹

Algal blooms: Noteworthy nitrogen

NUTRIENT OVER-ENRICHMENT in lakes drives water-quality deterioration. The August 2014 water supply shutdown from Lake Erie to over 500,000 residents in Toledo, Ohio (1), highlights this problem, which has been historically addressed by controlling phosphorus (P) inputs. Management and research are based on the premise that P is the limiting factor in freshwater productivity and harmful algal bloom (HAB) formation (2, 3). However, reducing P is no longer adequate for many lakes. Recent studies indicate algal proliferation in response to combined nitrogen (N) and P additions, or in some cases, the addition of only $N(4-8)$. This shift in the freehunter nutrient management new

Linnæus University Ecology and Evolution in Microbial model Systems

Steven W. Wilhelm³

Warmer climates boost cyanobacterial dominance in shallow lakes Kosten et al. 2012 DOI: 10.1111/j.1365-2486.2011.02488.x Global Change Biology

Algal blooms: Bloon **Proactive strategy** inve. coul

and Toleo

CYANOBACTERIAL HARMFUL algal blooms (CHABs) are increasing in severity on a Ma worldwide basis. Combining nutrientsource control with post-bloom control is currently considered the best strategy for dealing with CHABs (I). However, huge

Mingzhi Qu,¹ Daniel D. Lefebvre,¹ Yuxiang Wang, 'Yunfang Qu,² Donglin Zhu,³ Wenwei Ren^{4*}

Proactive CHAB control requires appropriate technical expertise aimed at inhibiting algal growth during the spring season, when cyanobacteria is vulnerable to foraging species. This would involve developing new tools to trace pre-bloom algal distribution so that proactive treatments only need to be implemented within algae concentrated areas and in a costeffective manner. Continuous monitoring and assessment of water bodies would maximize treatment efficacy.

Figure 13. Maps of the mean July-August FCA in the Baltic Sea, 1979-2013. Gray-scale from light to dark corresponds to increasing FCA.

1993 Nodularia spumigena

surface accumulation

Kahru and Elmgren 2014

Probability that SST will exceed 18°C in summer Day of 1st occurrence of Cyano bloom

Neumann et al. 2012

Life cycle strategies in cyanobacteria

Life cycle strategies in cyanobacteria

Nodularia spumigena Winter Spring Summer Autumn **COURTLE OF THE COUNTRY OF** and then manan ത **COLORED DE COLORED MORTHLAND A Last Days**

Centre

Linnæus University

Ecology and Evolution in Microbial model Systems

Including LC stages in models: Better temporal variability Hense and Burchard 2101 Hense et al. 2013

Increase in cyanobacteria in the future

Centre

Linnæus University

Ecology and Evolution in Microbial model Systems Including LC stages in models: Better temporal variability Hense and Burchard 2010 Hense et al. 2013

Hense et al. 2013

Climate extremes impacts on cyanobacteria

Gallina et al. 2011

Climate extremes impacts on cyanobacteria

Fig. 6. Yearly and seasonal averages of the cyanobacteria diversity derived from monthly values represented by the different ET-Classes. The bars represent the standard deviations.

A standard view is that increased temperature (+4 C) in the photic zone will boost summer phytoplankton (cyanos) blooms in the Baltic proper

Linnæus University Ecology and Evolution in Microbial model Systems

Centre

Main trophic pathways in planktonic food webs

CSIC webpage)

Figure 2. Time series of: (a) 15-year moving average of river run-off $(km³)$ to the Baltic Proper (y-axis inverted; x-axis shifted by 5 years); (b) 6-month moving average for salinity at 200 m depth at station II; (c) 12-month moving average for salinity at 20 m depth at station I; (d) average copepoda/cladocera biomass ratio for May-September (error bars: standard error) and 2-year moving average (line). Vuorinen et al. 1998

Facing salinity changes: Adaptation?

Figure 3: Boxplots of the biovolume of *Nodularia spumigena* Klotz et al. 2014

Shock, Adaptation, Recovery?

Linnæus University Centre Ecology and Evolution in Microbial model Systems

Klotz et al. 2014 Bertos Fortis et al. in review

Perspectives Climate, cyanobacterial dynamics and salinity

Towards reduced salinity

- Natural selection and rapid adaptation drive cyanobacterial dynamics.
- Reduced growth, biovolume and buoyancy
- Shorter filaments => increased grazing pressure
- No impact on toxin content (nodularin)
- Restricted peptide profile \Rightarrow high tolerance to lower salinity and a strong competitive ability against cooccurrent strains

Lower salinity could favour *N. spumigena* genotypes that will alter food web efficiency in response to temperature and eutrophication

Toxicity and shift in salinity in the Baltic Sea?

Some do better than others…

Nodularin Competitive advantage Or extreme cost?

Olofsson 2011

Figure 2. Time series of: (a) 15-year moving average of river run-off $(km³)$ to the Baltic Proper (y-axis inverted; x-axis shifted by 5 years); (b) 6-month moving average for salinity at 200 m depth at station II; (c) 12-month moving average for salinity at 20 m depth at station I; (d) average copepoda/cladocera biomass ratio for May-September (error bars: standard error) and 2-year moving average (line).

Seasonal development in the Northern Baltic Sea

Phytoplankton **Cyanobacteria** (1992-2011)

Food consumption Planktivorous fish (Arrhenius & Hansson 1993)

Occurrence of *Synechococcus* in Zooplankton

Field-collected zooplankton GC: Gut Content ssGC: size specific Gut Content

Distribution of ¹²C¹⁴N−, ¹³C/¹²C and ¹⁵N/¹⁴N in single *Nodularia* cells as measured by nanoSIMS after 6 h incubations with 13 C and $^{15}N_2$. Ploug et al. 2011 ISME

$N₂$ -fixing Cyanobacteria stimulate secondary production in the Baltic Sea

Karlson et al. 2015

Value of N:P ratios for predicting cyanobacterial blooms

Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment

David W. Schindler**, R. E. Hecky*, D. L. Findlay*, M. P. Stainton*, B. R. Parker*, M. J. Paterson*, K. G. Beaty*, M. Lyng*, and S. E. M. Kaslans

"Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E% ⁴Department of Biology, University of Minnesota,
Duluth, MN 55812: and ^sFreshwater Institute, Canadian Department of Fisheries and

ECOLOGY

SVP

Controlling Eutrophication: Nitrogen and Phosphorus

Daniel J. Conley,^{1*} Hans W. Paerl,² Robert W. Howarth,³ Donald F. Boesch,⁴ Sybil P. Seitzinger,⁵ Karl E. Havens,⁶ Christiane Lancelot,⁷ Gene E. Likens⁸

Improvements in the water quality of many freshwater and most coastal marine ecosystems requires reductions in both nitrogen and phosphorus inputs.

- How much N is fixed by cyanobacteria?
- Role of environmental factors?
- Transfer to higher trophic level?
- Can the losses of combined nitrogen by denitrification counteract eutrophication?