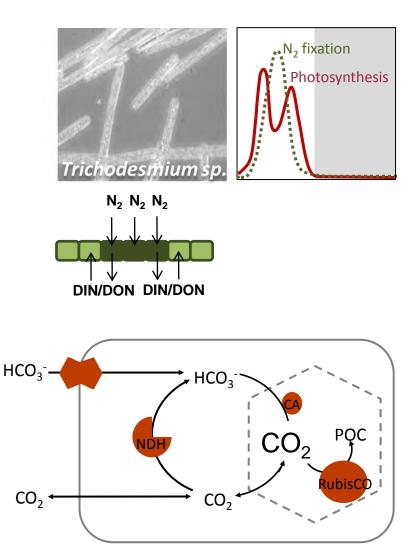


Harmful Algal Blooms and Climate Change Symposium 2015

Trichodesmium under ocean acidification - A close-up on colony microenvironments -

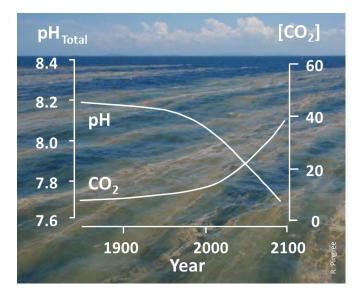
Meri Eichner, Isabell Klawonn, Samuel Wilson, Matthew Church, David Karl and Helle Ploug


Trichodesmium Background

- Filamentous, colony-forming cyanobacteria
- Forms **extensive blooms** in subtropical and tropical, oligotrophic oceans
- Important N₂ fixer
- Diverse range of associated organisms
- Various toxic effects reported (e.g. ciguatoxin-related toxins)

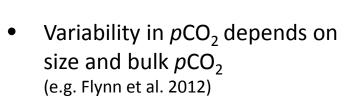
Trichodesmium Cellular N- and C-fluxes

- N₂ fixation has a high energy demand & is impeded by O₂
- → Separation of N₂ fixation and photosynthesis in time (diurnal cycle) and space (diazocytes)

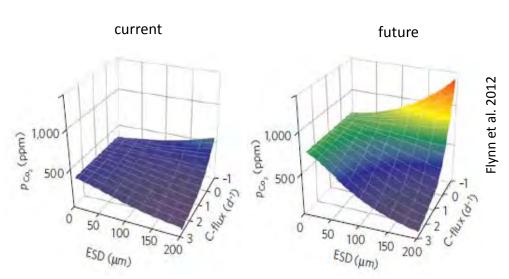


- RubisCO has a low CO₂ affinity
 & is competitively inhibited by O₂
- → Operation of Carbon Concentrating Mechanisms (CCM)

Trichodesmium and OA Previous results


- In lab studies *Trichodesmium* responded sensitively to OA, increasing growth, N₂ fixation and POC & PON production (e.g. Hutchins et al. 2007, Kranz et al. 2009)
- Energy reallocation from the CCM to N₂ fixation suggested as a key driver behind OA responses (e.g. Kranz et al. 2011, Eichner et al. 2014)

• Field experiments with N₂-fixing communities found **no OA effects** (e.g. Böttjer et al. 2014, Gradoville et al. 2014)



Microenvironments of colonies Previous results

- Conditions in colonies can differ strongly from the bulk with respect to e.g. [O₂] & pH (e.g. Paerl & Bebout 1988, Ploug 2008)
- 500 9.0 Α Dxygen (μmol O₂ L⁻¹) 400 8.5 μd 300-8.0 200 7.5 100 50 100 150 0 50 100 Elapsed time (min) Elapsed time (min)

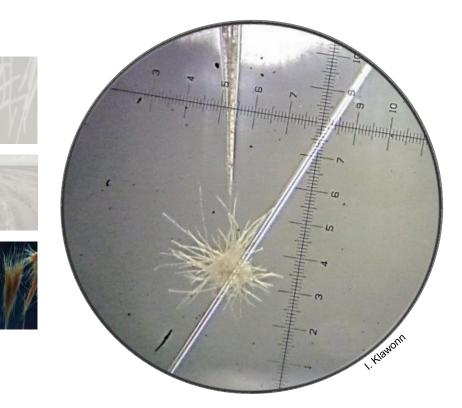
→ Requirements for the CCM differ between colonies and single filaments

В

150

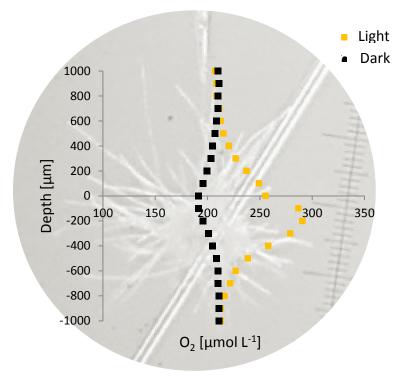
Ploug 2008

Microenvironments under OA Methods

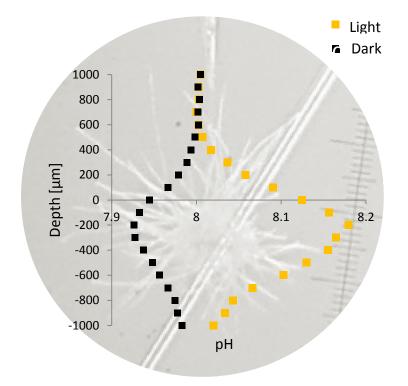


Trichodesmium colonies
 500 vs. 1000 μatm pCO₂

Microsensor measurements:
 O₂ & pH


 Stable isotope incubations: ¹⁵N₂ & ¹³C; SIMS analysis

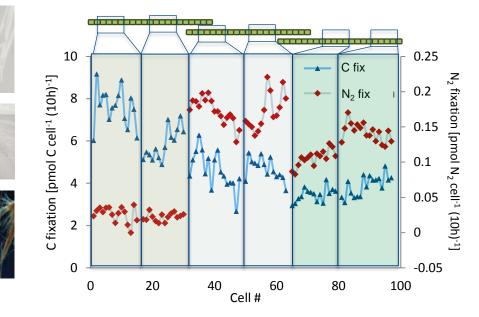
Microenvironments under OA Colony characteristics


- Diameter from 0.4 to 1 mm
- 400 to 15,000 cells colony⁻¹
- Different types of filaments (70% á ~10 μm, 30% á ~20 μm width)

Microenvironments under OA O₂ profiles

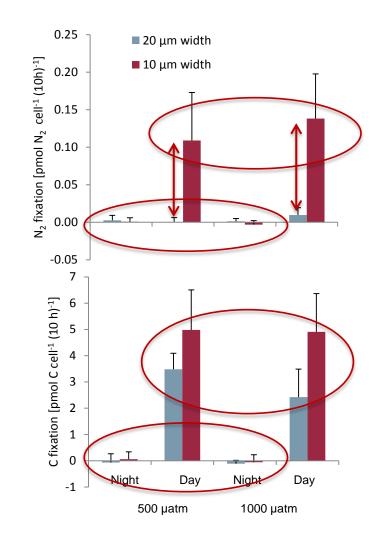
- $[O_2]$ in the center of colonies <u>Light</u>: 146 ± 35 % air saturation
 - <u>Dark</u>: 78 \pm 8 % air saturation
 - Total range 61 % to 203 % air sat.
 - Diurnal variation in photosynthesis
 - No CO₂ effects

Microenvironments under OA *pH profiles*



• pH in the center of colonies

	@ 8.1 bulk	@ 7.8 bulk
<u>Light</u> :	8.3 ± 0.5	7.8 ± 0.5
Dark:	7.8 土 0.2	7.4 ± 0.3


- Total range 7.1 to 8.6
- Larger variability in [H⁺] at high pCO₂
 - @ 8.1 bulk: Δ[H⁺] = 12 nmol L⁻¹
 - @ 7.8 bulk: Δ[H⁺] = 20 nmol L⁻¹

Microenvironments under OA Single cell C- and N-fluxes

• High variability between filaments but not between cells within filaments

Microenvironments under OA Single cell C- and N-fluxes

- High C- and N₂-fixation rates during the day
- 'Wide filaments' are non-diazotrophs
- No CO₂ effects

Microenvironments under OA Conclusions & Implications

- Highly variable [O₂] and pH
- Increasing variability in [H⁺] with pCO₂
- Demand for high flexibility in pHdependent processes, incl. CCMs

- High N₂ fixation + high [O₂]
- → Demand for efficient protection/repair of nitrogenase
- High C fixation + high pH
- \rightarrow Demand for highly active CCM

Variability

Energy demand

→ Low OA sensitivity due to adaptation to high variability?

→ Can flexibility be increased to match future pH-variability?

→ Do high energy demands enforce positive OA responses (mediated by energy re-allocation)?

To be continued.

Thank you for your attention

Acknowledgements

HOT team & crew of RV Kilo Moana Martin Whitehouse & Lev Ilyinsky Björn Rost & Laura Wischnewsky

