

Record high temperatures occurred during the Pacific Warm Anomaly, a.k.a. "The Blob"

January 2014

Developed offshore during winter 2013-14

Water Temperature (*F)

NANOOS Visualization System:

http://www.nanoos.org/

Summer 2014 – Warm water held offshore by upwelling in summer 2014

July 2014

Water Temperature (*F)

NANOOS Visualization System: http://www.nanoos.org/

Dramatically advected onto shelf in Fall 2014 with shift to downwelling.

October 2014

Very warm water at >50 m depth on shelf in October.

Oregon coast temperatures remained high Fall 2014 through Fall 2016:

Reported biological impacts during the Blob:

- Unprecedented copepod species richness off Oregon (Peterson et al. 2017; Jacobson yesterday)
- Unprecedented negative cold-water copepod anomalies
- Near-record positive warm-water copepod anomalies
- Extremely low juvenile/adult euphausiid biomass
- Massive Cassin's auklet die offs (J. Parrish)
- Extremely low salmon returns
- Abandoned and starved sea lion pups
- Unprecedented, wide-spread toxic Pseudo-nitzschia bloom (Du et al. 2016)

How was this big anomaly reflected in inland sea systems?

Were responses coherent throughout the region?

Zooplankton time series:

Strait of Georgia:

Inland Fjord 1995-present DFO Canada (D. Mackas, I. Perry, et al.)

• 300 m average depth

Puget Sound:

Inland Fjord 2014-present (zooplankton, J. Keister et al.) 1997-present (hydrography, King Count) Collaborative program

• 200 m average depth

Newport Line:

Continental shelf upwelling system 1996-present NOAA NWFSC (W. Peterson et al.)

• 65 m depth

Puget Sound: Water column heat content anomalies

Oregon coast – Nutrient and Chlorophyll anomalies

Relative to 1997-2018 mean

Puget Sound – Nutrient and Chlorophyll anomalies

Relative to 1997-2011 mean

Zooplankton biomass anomalies: Relative to 2014-2017 mean

Annual cumulative zooplankton biomass:

Central Strait of Georgia – zooplankton biomass increase 2014-17

Zooplankton biomass annual anomalies

Coastal salmon that out-migrated in 2014 and 2015 had some of lowest returns on record:

http://www.fpc.org

"Juvenile salmon growth was high in all years, 2014-2017." (B. Beckman unpub. June IGF-1 data) Coho <u>survival</u> and Chinook <u>returns</u> were lower in 2015.

Year	Coho survival Ranked from best	Chinook returns
1998	17	7
1999	12	1
2000	3	2
2001	6	5
2002	4	8
2003	5	17
2004	14	14
2005	10	18
2006	9	12
2007	7	13
2008	2	3
2009	8	9
2010	11	10
2011	19	16
2012	15	6
2013	1	4
2014	16	11
2015	18	15
2016	13 ²	-

Puget Sound Juvenile Chinook salmon growth and size:

Tended to be higher and less variable in 2015 than 2014

http://www.fpc.org

IGF-1 index of growth for 3 regions:

Chamberlain et al. 2017

N. Whidbey juvenile salmon size:

Courtesy of C. Greene et al., NOAA

Puget Sound Coho salmon survival rate was higher for 2015 out-migrants than 2014:

Puget Sound - salmon prey taxa much higher biomass in warm years:

Prey Field = Decapods + amphipods + ichthyoplankton + euphausiids

H1: Fundamental differences between systems

Deeper, warmer, more stratified system. Circulation limited by sills.

 2015 drought decreased stratification
 →higher production

Shallower, colder upwelling site.
Strongly influenced by water mass advection.

 Upwelling of warmer, less saline deep water, low NO₃, increased stratification
 →lower production

Strong evidence for advection-driven changes in

California Current zooplankton

H2: Different temperature optima of resident dominant species?

North Pacific warm-water species

Puget Sound dominants:
Calanus pacificus
Corycaeus anglicus
Paracalanus
Pseudocalanus moultoni

Boreal cold-water species

Oregon Upwelling dominants:

Calanus marshallae Pseudocalanus mimus Acartia longiremis

Working Hypothesis:

Puget Sound:

Higher temperature \rightarrow higher growth of resident species, supported by sufficient primary production.

Oregon Coast:

Advection of high temperature, nutrient poor water & oceanic species assemblage.

→Insufficient primary production, only small species present

Conclusions

During Blob years:

Large regional contrasts in zooplankton observed:

- Lower zooplankton biomass on continental shelf
- Higher zooplankton biomass in Puget Sound

Mixed response in salmon:

- High juvenile growth in both regions during warm years
- Indication of better survival from Puget Sound rivers in 2015; worse on coast.
- But...2016-17 returns low in both regions (lag in PS?)

Mechanisms under investigation!

2017 conditions returning to ~normal (at least in Puget Sound).

Partnerships & Funding

Innumerous field crew!
All of the co-authors

Additional data from:
Kim Stark
Gabriela Hannach
Cheryl Morgan
Karen Suchy

