Productive instability of coral reef fisheries after climate-driven regime shifts

James Robinson, Shaun Wilson, Jan Robinson, Calvin Gerry, Juliette Lucas, Cindy Assan, Rodney Govinden, Simon Jennings, Nick Graham

Coral reefs provide food & employment for >1 billion people

Reefs at Risk Revisited 2011

Coral reefs for food & employment...under recurrent bleaching events

Coral reefs for food & employment...under recurrent bleaching events

Graham & Nash 2012 Coral Reefs

Bleaching impacts on fisheries: models indicate productivity declines

Climate envelope models:

Food web models:

Rogers et al. 2017 J. Appl. Ecol.

Bell et al. 2013 Nat. Clim. Change

Bleaching impacts on fisheries: empirical expectations

Fisheries data:

McClanahan et al. 2002 Ambio

No immediate impacts... but long-term datasets are rare

Underwater observations:

Pratchett et al. 2014 Curr. Op. Env. Sust.

High response diversity to habitat disturbances

Bleaching impacts on fisheries: empirical expectations

Fisheries data:

McClanahan et al. 2002 Ambio

Underwater observations:

Pratchett et al. 2014 Curr. Op. Env. Sust.

How has coral bleaching impacted reef fisheries?

Seychelles: model system for understanding bleaching impacts on fisheries

Long-term monitoring of reef-associated fisheries

1998 El Nino: >90% coral mortality, phase shifts, benthic recovery

Landings dataset

Fishery-dependent
Daily catch records
Stratified by inner Seychelles regions
Species group, biomass
Gear type + number (= fishing effort)
1994 - 2016

Photo cred: Tim Daw

Target species

Target species

Siganid sp. Rabbitfish

Lethrinid sp. Emperors

Mixed sp. Parrotfish, goatfish

Landings dataset

Fishery-dependent
Daily catch records
Stratified by inner Seychelles regions
Species group, biomass
Gear type + number (= fishing effort)
1994 - 2016

Underwater dataset

Fishery-independent
Scuba observations
Stratified by reef habitat types
Fish abundance, biomass
Benthic habitat composition
1994, 2005, 2008, 2011, 2014

Photo cred: Nick Graham

How did a climate-driven coral mortality event impact reef-associated fisheries?

Trap fishery catches:

- CPUE and CV of CPUE
- Yield
- Fishing effort

Underwater surveys:

- Biomass, size, habitat associations
- Benthic habitat composition

Statistical models:

- Time-series GAMs
- Multivariate dispersion

How did a climate-driven coral mortality event impact reef-associated fisheries?

Trap fishery catches:

- CPUE and CV of CPUE
- Yield
- Fishing effort

Underwater surveys:

- Biomass, size, habitat associations
- Benthic habitat composition

Statistical models:

- Time-series GAMs
- Multivariate dispersion

Mean CPUE remained stable or increased from 1994-2016

Catch variability increased steadily from 1994-2016: so, after bleaching, fishers' catches are more variable in each month

How did benthos and target fish assemblages change after bleaching?

Underwater visual census: target group biomass 1994 - 2014

Differential bleaching response trajectories for reef benthos

Differential bleaching response trajectories for reef benthos

Greater spatial variability in benthic composition and target fish biomass

1. Siganids: browsing herbivores recruit to regime-shifted reefs

2. Mixed species: variable Scaridae productivity on recovering reefs

2. Mixed species: variable Scaridae productivity on recovering reefs

2. Mixed species: variable Scarid productivity on recovering reefs

Coral bleaching events: implications for fisheries

I. Low trophic levels resilient to habitat collapse

Herbivore response diversity + high productivity followed shift in algal resources:

= CPUE and yields stable/increasing

Siganid (rabbitfish) targeting by active traps

2. Greater catch instability linked to benthic recovery trajectory

Spatial heterogeneity in target fish biomass

- High Scarid (parrotfish) biomass
- Poor quality 'recovering reefs' with low fish biomass
- Declining minimum catches

- Larger Siganid (rabbitfish) schools
- High biomass = heavily targeted

Future reef fisheries under recurrent bleaching

Increase monitoring efforts on resilient, fast-growing herbivores

Greater reliance on low trophic level species – need stock assessments

Examine how catch instability might impact livelihoods and market supply chains

Future reef fisheries under recurrent bleaching

Increase monitoring efforts on resilient, fast-growing herbivores

Greater reliance on low trophic level species – need stock assessments

Examine how catch instability might impact livelihoods and market supply chains

3. Lethrinid: reliant on both habitat types difficult to sample with UVC rarely caught in traps (10% of catches)

Grazer
Scraper
Invertivore
Invertivore/Piscivore