CLIMATE-HUMAN-POLICY CONNECTIONS IN DEEP-OCEAN ECOSYSTEMS

Lisa A. Levin
Center for Marine Biodiversity and Conservation,
Scripps Institution of Oceanography

Chih-Lin Wei, National Taiwan University William Cheung, Univ. British Columbia Daniel Dunn, Duke University

Effects of Climate Change in the World Oceans

Washington DC, June 2018

Climate-Human-Policy Connections in the Deep

- Changing environments
- Climate confluence with human activities
- Building Climate into Management
 - Spatial Planning
 - Environmental Impact Assessment
- Science Diplomacy: A role for scientists and networks

The ocean as great climate mitigator

Thermohaline circulation and convection leads to a warmer, more acidic, less oxygenated ocean

Abyssal Heat Uptake > 4000 m (1992-2005)

Purkey and Johnson 2010, Rhein 2013

Change in dissolved oxvgen per decade

Projected changes on the deep-sea floor

RCP 8.5 Change from 1951/2000 to 2080-2100 at the sea floor

Growing human pressures in the deep ocean ...

Ferromanganese crusts on a seamount

Seamounts

(CoRMC-H, Auki)

Seafloor Mining

Tool (SMT)

Oil and Gas Extraction

Debris

Mine tailings Disposal

Bring disturbance...

ALTERED SUBSTRATE

Temperature interaction with seabed mining

RCP 8.5 Change from 1951/2000 to 2080-2100

Wei et al. 2018

Ch8, Deep-Ocean climate change impacts on habitat, fish and fisheries. Fi

pH interaction with seabed mining

Dissolved Oxygen Difference (µmol kg Export POC Flux Difference (mg C m⁻² day⁻¹)

Temperature Difference (° C)

RCP 8.5 Change from 1951/2000 to 2080-2100

Oxygen interaction with seabed mining

Dissolved Oxygen Difference (µmol kg⁻¹)

Temperature Difference (° C)

Dissolved Oxygen Difference (µmol kg

Export POC Flux Difference (mg C m⁻² day⁻¹

Wei et al. 2018

Ch8, Deep-Ocean climate change impacts on habitat, fish and fisheries. FAO

RCP 8.5 Change from 1951/2000 to 2080-2100

POC flux interaction with seabed mining

- -Less biomass
- -Smaller body size
- -Slow recovery from mining disturbance
- -Problems coping with other stressors

Temperature Difference (° C)

Wei et al. 2018

Ch8, Deep-Ocean climate change impacts on habitat, fish and fisheries. FAO

Climate change interaction with oil & gas activities

Fish: Habitat, Distributions, Body Size, Food webs

See S6 talks by Morato Carreiro-Silva Cheung

How can we incorporate climate into management of the deep-sea floor?

International management of deep-ocean activities.

Figure from chapter by Ardron & Warner, in Handbook of Ocean Resources, Earthscan Books

SEABED MINING

The International Seabed Authority has a mandate:

To adopt measures necessary to ensure effective protection of the marine environment

Areas of Particular Environmental Interest (APEIs) = no-mining areas

- Important Areas
- Representativity
- Connectivity
- Replication
- Viability & Adequacy

SEMPIA PLANNING

100, 200, 300, 400-km wide APEI scenarios

Incorporating projected climate change into assessment of different APEI scenarios

Dunn et al. in press Science Advances

Projected Climate Change in 200, 300, 400-m wide APEI scenarios

Do we protect the least vulnerable areas as refugia? or the most vulnerable areas to enhance resilience?

Dunn et al. in press, Science Advances & Dunn, Wei, Levin et al. In prep.

MID ATLANTIC RIDGE

Projections under RCP 8.5 to 2100

Deep-sea Fisheries:

RFMOs must consider climate change impacts

Nature.com

United Nations General Assembly resolution 71/123 2016

Paragraph 185. Calls upon States, individually and through regional fisheries management organizations and arrangements, "to take into account the potential impacts of climate change and ocean acidification in taking measures to manage deep-sea fisheries and protect vulnerable marine ecosystems"

Southeast Atlantic Fisheries Organization

SEAFO	POC Flux	Oxygen	pН	Temperature
>200 m	-0.2	-0.01	0.07	0.07
200-2,500 m	-0.3	-0.01	0.1	0.1
Bottom fishing area	-0.17	-0.01	0.09	0.09
VME closed area	-0.14	-0.01	0.06	0.06
Seamounts	-0.18	-0.01	0.07	0.07
Cold-water corals	-0.52	-0.01	0.06	0.06
Canyons	-0.29	-0.01	0.1	0.1

Climate Change Projections 2041-2060, RCP 8.5

Export POC Flux Difference (mg c m⁻² day⁻¹)

Dissolved Oxygen Difference (µmol kg⁻¹)

Wei et al. 2018 Ch8, Deep-ocean climate change impacts on habitat, fish and fisheries. FAO

Northeast Atlantic Fisheries Commission

Wei et al. 2018

Ch8, Deep-Ocean climate change impacts on habitat, fish and fisheries. FAO

NEAFC	POC Flux	Oxygen	pН	Temperature
>200 m	-0.22	-7.11	-0.04	-0.01
200-2 500 m	-0.62	-4.42	-0.11	0.11
Bottom fishing area	-2.2	13.9	-0.12	0.56
VME closed area	-0.27	-13.51	-0.09	-0.14
Cold-water corals	-0.44	-10.23	-0.1	0.01
Canyons	-0.58	-8.74	-0.09	-0.05

Climate Change Projections 2041-2060, RCP 8.5

Time of Emergence

(when the climate signal exceeds natural variability)

- Identify the most imminent threats
- Identify areas with least change to act as refugia

All areas will exceed natural variability for all parameters before 2060

NEAFC	POC Flux	Oxygen	pН	Temperature
>200 m	2057	2044	2044	2050
200-2 500 m	2048	2045	2030	2041
Bottom fishing area	2051	2037	2028	2027
VME closed area	2048	2043	2029	2037
Cold-water corals	2052	2049	2032	2041
Canyons	2043	2043	2031	2040

NEA	\FC		A. Co	The second
		>		4
A PARTY OF THE PAR	200000			2
	Day Page	1	Cı	umulative
	ME S		2400	imate
-		7-14	the last	azard
				*
34	20 W	9.	20°E	40°E

SEAFO	POC Flux	Oxygen	рΗ	Temperature
>200 m	2047	2046	2042	2050
200-2 500 m	2048	2039	2039	2041
Bottom fishing area	2042	2040	2039	2048
VME closed area	2044	2044	2041	2053
Seamounts	2040	2040	2042	2053
Cold-water corals	2046	2048	2044	2042
Canyons	2046	2040	2037	2044

Wei et al. 2018

Ch8, Deep-Ocean climate change impacts on habitat, fish and fisheries. FAO

Climate and Spatial Planning

 Climate change can affect connectivity of populations and protected areas.

 Climate change can alter habitat suitability, redistribute species, alter biomass and modify biodiversity.

Ch 10 Morato et al. in *Deep-Ocean* climate change impacts on habitat, fish and fisheries. FAO

Biodiversity Loss

Cheung et al. 2016

Connectivity of MPAs

Fox et al. 2016

Mitarai et al 2016, PNAS

A role for climate in 'BBNJ' Biodiversity Beyond National Jurisdiction

Development of an international legally binding instrument under the United Nations Convention on the Law of the Sea on the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction

Possible BBNJ elements:

- I. Area-based management tools (including MPAs)
- II. Environmental impact assessments
- III. Marine genetic resources
- IV. Capacity building and the transfer of marine technology

Ecologically and Biologically Significant Areas

Cumulative Climate Impact

Ch8, Wei et al. in Deep-ocean climate change impacts on habitat, jish and fisheries. FAO

North Atlantic

Johnson et al. 2017

Climate and Environmental Impact Assessment

EIA Required

- Seabed mining (ISA)
- Deep sea fishing (FAO)
- Dumping of wastes + marine geoengineering research (IMO)

EIA Not Currently Required

Pelagic Fishing
Hydrocarbon extraction
Shipping discharge
Bioprospecting

Ocean Energy
Aquaculture
Cables and Pipelines
Tourism

BASELINE STUDIES & MONITORING:

- *measure climate variables (T, S, O2, Carbonate System, POC flux)
- *vulnerabilities to climate

TRIGGERS AND THRESHOLDS for carrying out EIAs/SEAs; decision making, serious harm

CUMULATIVE EFFECTS of targeted activity with climate-induced changes (in combination with contaminants, particles, biota, microbes)

IMPACTS ON ECOSYSTEM SERVICES

made more vulnerable to physical disturbance by climate change

BBNJ:

Can we put our observing programs to work to help incorporate climate into ecosystem-based management of the deep ocean?

New deep-ocean observations, technologies & coordination
 WHAT?? WHERE?? WHEN??

Application of genomics to impact and climate change assessment?

Figure 2. Schematic representation of the 'Meta' levels in the ecology of microbial communities.

Maron et al. 2007

www.deepoceanobserving.org

Essential Ocean Variables (for the Deep)

Inventory of Sustained Deep-Ocean Observing

Integrate climate observing into ecosystem-based management of the deep ocean

PHYSICS	BIOGEOCHEMISTRY	BIOLOGY AND ECOSYSTEMS
Sea state	Oxygen	Phytoplankton biomass and diversity
Ocean surface	Nutrients	Zooplankton biomass and diversity
stress		
Sea ice	Inorganic carbon	Fish abundance and distribution
Sea surface	Transient tracers	Marine turtles, birds, mammals
height		abundance and distribution
Sea surface	Particulate matter	Live coral
<u>temperature</u>		
Subsurface	Nitrous oxide	Seagrass cover
temperature		
Surface currents	Stable carbon isotopes	Macroalgal canopy
Subsurface	Dissolved organic carbon	Mangrove cover
currents		
Sea surface	Ocean colour (Spec Sheet	Microbe biomass
salinity	under development)	and diversity (*emerging)
Subsurface		Benthic invertebrate abundance and
salinity		distribution (*emerging)
Ocean surface hea	at flux	

CLIMATE - HUMAN - POLICY CONNECTIONS

Inform Sustainability:

- Where to make new deep ocean observations.
- Essential ocean variables for deepsea sustainability
- Effective spatial planning in the deep ocean
- Improved Environmental Impact Assessment
- New research directions

A new role for deep-sea scientists

SCIENCE DIPLOMACY

HUMANS

www.dosi-project.org

International network for scientific investigations of deep-sea ecosystems

www.indeep-project.org

OBSERVING/ EXPLORATION

www.deepoceanobserving.org

Acknowledgements

- Special thanks to Chih-Lin Wei, Daniel Dunn, William Cheung
- Also to Matt Gianni Kristina Gjerde, Nadine LeBris, Tony Thompson, Maria Baker, Telmo Morato, Natalya Gallo, Sarah DeLand
- DOSI, DOOS, SEMPIA, FAO contributors
- PICES/ECCWO for travel support

