

Changes in the Peruvian upwelling system under future climate scenarios

Manon <u>Gévaudan</u>, François Colas, Vincent Echevin, Dante Espinoza-Morriberón, Jorge Tam, Dimitri Gutierrez

Introduction: why do we need regionalization?

Figure from Chaigneau et al, 2013

▶ Global models : coarse spatial resolution → coastal upwelling not resolved

Introduction: why do we need regionalization?

▶ Global models: coarse spatial resolution → nearshore wind structure not resolved

Previous studies of climate change in the Humboldt system

Downscaling of IPSL-CM3 (Phy & BGC): Idealized scenarios (Preindustrial, 2xCO2 and 4CO2)

- ► Atmospheric response :
 - Statistical and dynamical downscaling show no wind increase off Peru

Goubanova et al., 2011; Belmadani et al., 2013

- Ocean dynamics using ROMS (1/6°):
 - Nearshore SST & Eddy Kinetic Energy increase
 - Vertical flux (upwelling) decrease

Echevin et al., 2012; Oerder et al., 2015

Biogeochemistry using ROMS-PISCES:

 Strong surface chlorophyll decrease due to decrease of nutrient content

Brochier et al., 2013

Method and data

Modeled area

Downscaling of 3 IPCC models (Phy & BGC)

CNRM-CM5, GFDL-ESM2M, IPSL-CM5A-MR

Model : ROMS - PISCES (dx = 1/9°)

Figure from Moss et al., 2010

Method and data

Modeled area

Downscaling of 3 IPCC models (Phy & BGC)

CNRM-CM5, GFDL-ESM2M, IPSL-CM5A-MR

Model : ROMS - PISCES (dx = 1/9°)

- Atmospheric forcing :
 - "poor guy downscaling" of IPCC models : bias correction using QuikSCAT and COADS
 - \rightarrow X = X(obs) + (X_{rcp8.5}(GCM) X_{hist}(GCM))
 - Bulk formulae for wind stress and heat fluxes
 - Monthly means

Method and data

Modeled area

Downscaling of 3 IPCC models (Phy & BGC)

CNRM-CM5, GFDL-ESM2M, IPSL-CM5A-MR

Model : ROMS - PISCES (dx = 1/9°)

- Oceanic boundaries :
 - ► GFDL and CNRM : monthly means
 - ► IPSL : annual means
- Biogeochemistry :
 - "poor guy downscaling" of IPCC models : bias correction using WOA

 $ex : NO3_{OBC} = NO3(WOA) + NO3_{rcp8.5}(GCM) - NO3_{hist}(GCM)$

Annual means

Sea Surface Temperature time series

Strong SST increase, amplitude depending on the downscaled model

Vertical temperature anomalies

Annual differences between 2091-2100 and Control

Offshore section (88°W, 2°N-10°S)

Temperature [°C]

Subsurface box: 50-200 m deep

Surface box: 0-20 m deep

- Same subsurface anomalies offshore and nearshore
- ▶ Different surface anomalies related to different surface forcings

Wind stress intensity time series

~10-15% decrease in IPSL and CNRM, no change in GFDL poster of Chamorro et al. seen yesterday

Net offshore transport = measure of actual upwelling

Annual means at the coast for Control and 2091-2100

(7°S-13°S, 0-100 km)

~10-15% decrease in IPSL and CNRM, no change in GFDL

Geostrophic Eddy Kinetic Energy (EKE)

Annual means nearshore for Control and 2091-2100 (85°W-76°W, 7°S-13°S)

GFDL - Control (2006-2015)

Very different tendencies from one model to the other

Chlorophyll

CNRM - Control (2006-2015)

Chlorophyll sections

Color: differences between 2091-2100 and Control / Contours: Control

Increase at the surface, decrease below

Chlorophyll sections

▶ in relation with near-surface stratification increase

Nitrate and oxygen time series (work in progress) **Nitrate** Oxygen Mean in a coastal box Mean in a coastal box (7°S-13°S, 0-100 km, (7°S-13°S, 0-100 km, 40-100 m deep) 100-200 m deep) **CNRM GFDL** 24 **IPSL** Nitrate [µmolN/L] 20 19

Nitrate variations at subsurface not related to surface chlorophyll variability : other nutrients (Si, PO4) may play a role → to be continued

2030

2040

2060

2070

2100

▶ No OMZ intensification - but are GCMs O₂ trends reliable?

2080

2010

2020

2030

2040

2050

Year

2060

2070

2090

Conclusions

Summary :

- Strong decadal variability
- ► Increase in SST
- ► Few changes in wind
- ▶ No clear trend in EKE and chlorophyll
- Stratification increase leads to shallower chlorophyll reach layer

► Limitations of this study :

- > 3 models is few to draw tendencies
- Methodology made the assumption of correct GCM variability (only mean state bias corrected)

SST - comparison global model vs downscaling

SST anomalies alike with and without dynamical downscaling