Evaluating the utility of the Gulf Stream Index for predicting recruitment of Southern New England yellowtail flounder

Haikun Xu¹, Timothy Miller², Sultan Hameed³, Larry Alade², Janet Nye³

¹ Inter-American Tropical Tuna Commission
² NOAA Northeast Fisheries Science Center
³ School of Marine and Atmospheric Science, Stony Brook University

4th Climate Change Symposium

Yellowtail flounder (Limanda ferruginea)

Shifts in distribution

Benchmark assessment

 SNE yellowtail flounder was recently assessed using Age-Structured Assessment Program (ASAP) in 2012

 "Determining the cause of recent low recruitment was the largest source of uncertainty in this assessment." – NEFSC 2012

Previous work: Mid-Atlantic cold pool affects recruitment

 Field: Colder cold pool -> higher recruitment level (Sullivan et al. 2000, 2005).

• Modelling: The state-space model that incorporates the Cold Pool Index (CPI) into the SR function has a smaller AIC and retrospective biases (Miller et al. 2016).

http://maracoos.org/blogs/main/?p=461

1. The best environmentally-explicit stock-recruit function

Environmental index Lag 1 Lag 2 Lag 3 0.38 IL pressure IL longitude IL latitude AH pressure -0.36AH longitude -0.38AH latitude -0.38NAO -0.37GSI -0.52**GSNW** -0.41**CPI** -0.39

-GSI and log(R)

Xu et al. 2018

1. The best environmentally-explicit stock-recruit function

the best environmental covariate + the best way to incorporate this covariate

http://podaac.jpl.nasa.gov/AnimationsImages/Images/GulfStream

the best covariate + the best way to incorporate the covariate

Model	Stock-Recruit function	AIC	(AIC)
R (SSB)		13.890	0.001
R (CPI _{limiting} , SSB)		5.396	0.037
R (CPI _{masking} , SSB)		4.532	0.057
R (CPI _{controlling} , SSB)		3.934	0.076
R (GSI _{limiting} , SSB)		0.000	0.547
R (GSI _{masking} , SSB)		4.940	0.046
R (GSI _{controlling} , SSB)		1.674	0.237

2. Compare the estimates (1973-2011) and predictions (2012-2016) from R(SSB) and R(SSB, GSIlimiting)

The best fitting stock-recruit function: $R = \frac{SSB}{b + aSSBe^{cGSI}}$

3. Retrospective recruitment predictions

Estimated recruitment from the full data set

3. Retrospective recruitment predictions

Prediction skill comparison based on

Mean Relative Difference & Mean Absolute Relative Difference

$$MRD_{t} = \frac{1}{13} \sum_{i=1996}^{2008} \frac{\theta_{i,t} - \theta_{i+t}}{\theta_{i+t}}$$

MARD_t =
$$\frac{1}{13} \sum_{i=1996}^{2008} \frac{|\theta_{i,t} - \theta_{i+t}|}{\theta_{i+t}}$$

Prediction lead time	1 year	2 years	3 years
MRD: R(SSB)	1.23	1.53	1.68
MRD: R(SSB&GSI)	0.89	1.26	1.59
MARD: R(SSB)	1.45	1.73	1.76
MARD: R(SSB&GSI)	1.04	1.50	1.77

Why the large-scale GSI performs better than the local-scale CPI in explaining recruitment deviations?

Hypothesis: The large-scale GSI holds information on several local processes that affect the recruitment, and these effects are **additive** in general.

- 1. Shelf SST (Gawarkiewicz et al. 2012): early pelagic phase
- 2. Shelf current and eddy (Hare and Cowen 1996): larval transport
- 3. Shelf primary production (Saba et al. 2015): food availability

Limiting factor: carrying capacity of the ecosystem for pre-recruits

Take-home messages

 The recent low recruitment can be explained by the GS being in a more northerly position and the shelf being warmer

 Including the GSI effect on recruitment improves the near-term prediction skill

 But the accuracy of the prediction is largely determined by the accuracy of the corresponding GSI prediction

Acknowledgement

Chris Legault and Sarah Gaichas (NEFSC)
NOAA Fisheries and the Environment (FATE)

