

Institutional settings, climate change and the re-distribution of tropical tuna fisheries

Iratxe Rubio, Unai Ganzedo, Alistair Hobday, Elena Ojea

OUTLINE

- Climate change is causing shifts in fish distribution worldwide (*Poloczanska et al., 2016*)
- Evidence concentrates mostly in the North
 Atlantic Ocean, lacking observations in tropical regions (Aguión et al., ongoing research)
- The strongest ocean warming will be in tropical and Northern Hemisphere subtropical regions (IPCC, 2014)
- Importance of tropical tunas for fisheries economies (Miyake et al. 2010; FAO 2016)

- Climate change is causing shifts in fish distribution worldwide (Poloczanska et al., 2016)
- Evidence concentrates mostly in the North Atlantic Ocean, lacking observations in tropical regions (Aguión et al., ongoing research)
- The strongest ocean warming will be in tropica and Northern Hemisphere subtropical regions (IPCC, 2014)
- Importance of tropical tunas for fisheries economies (Miyake et al. 2010; FAO 2016)

- Climate change is causing shifts in fish distribution worldwide (*Poloczanska et al., 2016*)
- Evidence concentrates mostly in the North Atlantic Ocean, lacking observations in tropical regions (Aguión et al., ongoing research)
- The strongest ocean warming will be in tropical and Northern Hemisphere subtropical regions (IPCC, 2014)
- Importance of tropical tunas for fisheries economies (Miyake et al. 2010; FAO 2016)

- Climate change is causing shifts in fish distribution worldwide (Poloczanska et al., 2016)
- Evidence concentrates mostly in the North
 Atlantic Ocean, lacking observations in tropical regions (Aguión et al., ongoing research)
- The strongest ocean warming will be in tropical and Northern Hemisphere subtropical regions (IPCC, 2014)
- Importance of tropical tunas for fisheries economies (Miyake et al. 2010; FAO 2016)

2. RESEARCH QUESTIONS

database

analysis

ICCAT Database Monthly cath and effort data (CPUE calculation: t/hour)

• Resolution: 1º x 1º aggregated to 5º x 5º and by season

Time series: 1991-2015

3 species 1 gear 2010-2016 (SCRS, 2017) Yellowfin Tuna (YFT) Bigeye Tuna (BET) Skipjack Tuna (SKJ) 73% of total YFT landings ~36 of total BET landings ~81 of total SKJ landings

Center of gravity
CPUE

- Center of gravity (COG) of fleets per species and year (Saraux et al., 2014).
- Gear: PS
- East Atlantic

$$\cos = \frac{\sum_{i=1}^{n} Latitude_{i} \cdot CPUEi}{\sum_{i=1}^{n} CPUE_{i}}$$
 COG N

Environmental data

- Monthly SST anomaly
- 1991-2015
- 5°2×5°
- Source: NOAA Kaplan Extended SST V2 (<u>link</u>)
- Aggregation by season

Temperature anomaly changes in the study period and area

Empirical Orthogonal Functions

Empirical Orthogonal Functions (EOFs) of CPUE and T

- To study possible spatial modes (ie, patterns) of variability and how they change with time (Saraux et al. 2014; Björnsson and Venegas 1997)
- Correlation CPUE vs temperature

Empirical
Orthogonal
Functions

Empirical Orthogonal Functions

- DINEOF reconstruction (Beckers et al. 2006; Ganzedo et al. 2013)
- Covariance matrix
- Eigenvector and eigenvalue problem solution
- % data variance (PC1 and EOF 1 max. value, then PC2, EOF2...)

"X(x,y,t) =
$$\sum_{m=1}^{M} PC_m(t)$$
. $EOF_m(x,y)$ "

Variation of spatial modes through time

Spatial modes

Events database

Timeline of institutional and technological events

Institutional-Access

Data on EU fishing agreements

1991 – 2015 (Le Manach et
al.2013 and own elaboration
from agreements)

Institutional-Conservation
Events data on TACs, capacity limit,
closures, 3 species status
1991-2015 (ICCAT resolutions)

Technological changes Events data on technological changes 1991-2015 (*López et al. 2014*)

Changes in CPUE distribution

Changes in CPUE distribution

Changes in CPUE distribution

EOFs, YFT (anomaly)

Changes in CPUE distribution

There is a sinificant "weak" correlation between PC1 SST ANOMALY and PC2 of the 3 species during the study period 1991-2015

But when dividing the time series...

No correlation between 2006-2015

FADs influence + time lapse?

Timeline of institutional and technological events

Timeline of institutional and technological events

Timeline of instit

Figure 1 – EU agreements in West Africa, including new and potential SFPAs

Data source: MarineRegions.org, accessed on 27 June 2016. Different types of boundaries are indicated for the waters of coastal states: in yellow the 200 nautical mile line, in green boundaries established by treaties, in blue the median lines and in red disputed boundaries (also in figures 2 and 3).

l events

Year

Technological events

Institutional-Conservation events

Institutional-access (EU agreements)

(EU briefing, 2016)

5. MAIN IDEAS

- Center of gravity moves polewards
- Changes in CPUE distribution are correlated with SST changes
- However, this relationship is until the "FADs technological bloom" (1991-2005)
- Conservation and access agreements events happened in the last period, suggesting that these may have a bigger role in CPUE distribution than SST (2006-2015)