Adaptations to maintain the contributions of small-scale fisheries to food security in the Pacific Islands

Marine Policy 88 (2018) 303-214

Johann Bell^{1,2}, Andrés Cisneros-Montemayor³, Quentin Hanich², Johanna Johnson^{4,5}, Patrick Lehodey⁶, Bradley Moore⁷, Morgan S. Pratchett⁵, Gabriel Reygondeau³, Inna Senina⁶, John Virdin⁸, Colette Wabnitz³

- 1. Conservation International, Washington DC, USA
- 2. University of Wollongong, Australia
- 3. University of British Columbia, Vancouver, Canada
- 4. C₂O coasts, climate oceans, Cairns, Australia
- 5. James Cook University, Australia
- 6. Collecte Localisation Satellites, Ramonville, France
- 7. Pacific Community, Noumea, New Caledonia
- 8. Duke University, Durham, USA

Context

Importance of fish to food security (kg/person/year)

Regional plans to use fish for food security

 Provide 35 kg of fish per person per year

 Maintain traditional fish consumption where it is >35 kg

The problem

Increased coral bleaching

Reduced reef fish production

Source: Bell et al. (2011)

Adaptations

Time

An adaptation framework

Adaptations to minimize the gap

Manage and restore vegetation in catchments

Well-managed catchment

- **Reverse degradation** of habitats
- Maintain water quality
- Conserve structural complexity of reefs
- Prohibit physical damage to seagrass
- Manage timber collection in mangroves

Improves resilience of coral reef, mangrove and seagrass habitats

Adaptations to minimize the gap

Provide for landward migration of fish habitats

Source: Bell et al. (2011)

Adaptations to minimize the gap

Maintaining spawning adults needed for regular replenishment will help build resilience of stocks

Sustain production of fish stocks

Maintain habitat mosaics and herbivorous fish species

Supporting policies

Foster effective co-management based on:

- A climate-informed, community-based, ecosystem approach to fisheries management (CBEAFM) to maintain fish habitats and fish stocks
- Integrated development plans for agriculture, forestry, infrastructure and fisheries to avoid maladaptation
- 'Primary fisheries management' regulations to underpin CBEAFM

Communities

Governments

Adaptations to fill the gap

Skipjack tuna > 1 million Mt p.a.

Yellowfin tuna > 300,000 Mt p.a.

Assist communities to catch tuna by expanding use of nearshore fish aggregating devices (FADs)

Provide training in safe and effective FAD-fishing methods

Adaptations to fill the gap

Effects of climate change on tuna?

Effects of climate change on tuna?

Supporting policies

- Include nearshore FADs as part of the national infrastructure for food security
- Transfer some access rights and revenues from industrial tuna fisheries to small-scale fisheries
- Evaluate whether industrial fishing exclusion zones provide adequate access to tuna for small-scale fishers
- Couple fishing licences to small boat operator certificates
- Develop forecasting tools for small-scale fishers
- Store spare FAD materials in cyclone-proof containers

Governments

Thank you

Photo: Anders Ryman/Corbis