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The impact of eddy mixing on the 
sensitivity of ocean biogeochemical 

cycling to doubled CO2 within an earth 
system model 





•How do we properly parameterize eddy mixing 
within an earth system model to simulate 
realistic results? 

•What is driving changes in deoxygenation under 
climate change? 
 



ESM2Mc Galbraith et al. (2011) 



BLING: Biochemistry, Light, Iron, 
Nutrients and Gases. 
 
 
 
 

 
• Prognostic tracers: 

•    Dissolved organic material 
• PO4 and NO3 (Macronutrient) 
• Dissolved inorganic carbon 
• Alkalinity 
• Fed (Micronutrient) 
• Oxygen 
 

• Diagnostic tracers: 
• Chlorophyll 
• Biomass 

 
• More information on model: 

Galbraith et al. (2011) 
 



AREDI 
• determines the turbulent flux of different tracer properties along 

isopycnals using a Fickian diffusion approximation such that the flux 
of tracer C in direction x is given by (Redi, 1982):  
 

𝐹𝐹𝑥𝑥𝐶𝐶 = −𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

 
 

 



AGM 
• Rearranges tracers through an advective flux which parametrizes the 

eddy form drag associated with mesoscale eddies using a shear-
dependent coefficient scheme (Gent and McWilliams, 1990): 
 

𝐹𝐹𝑥𝑥𝐶𝐶  =  −𝐶𝐶 × 𝐴𝐴
𝐺𝐺𝐺𝐺

 
𝜕𝜕𝑆𝑆𝑥𝑥
𝜕𝜕𝜕𝜕

  

 





AREDI400 
AREDI800 
AREDI1200 
AREDI2400 

ABER2D 
ABERZONAL 
 

Constant in 
space and time 

Vary in 
space, 
but not in 
time 
 

Abernathey and 
Marshall (2013) 
 



286 PPMv 

572 PPMv 
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O2 concentration (and its 
change)  
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(and its change) Mkm3 
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PO4-PO4_pre (and its 
change) 
mol/kg 

  

Obs. 
  
  

3.660 
  

  
  

177.1 

  
  

150.1 

  
  

17.70 

  
  

N/A 

400 4.846 
(0.319) 

154.7  
(-4.127) 

182. 6  
(3.908) 

51.28 
 (-1.939) 

0.905  
(0.021) 

800 4.604 
(0.326) 
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(0.034) 

1200 4.379 
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(-0.812) 

  
  
  

0.752 
(0.037) 
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Scatter plot results from six model 
runs (AREDI400, AREDI800, 
AREDI1200, AREDI2400, ABER2D 
and ABERZONAL) with doubled 
CO2, compared to observations 
(symbol), in the NW Pacific 

• At 300m there is less salinity 
stratification amongst the models 
resulting in higher oxygen 
concentration.  
 



At 3000m there is greater 
salinity stratification amongst 
the low mixing models and a 
lower salinity stratification 
amongst the high mixing 
models and ABER2D and 
ABERZONAL, thus resulting in 
higher oxygen 
concentrations.  



What about our marine phytoplankton friends? 
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   Global Atlantic  

30N-65N 

Pacific 

30N-65N 

Southern Ocean 

<30S 

Tropics 

30S-30N 

Satellite 9.8 +/- 20% 1.1 1.5 2.4 3.9 

AREDI400 9.95 (-0.73) 1.31 (-0.14) 1.14 (-0.12) 2.69 (-0.09) 5.01 (-0.45) 

AREDI800 10.4 (-0.78) 1.31 (-0.09) 1.43 (-0.22) 2.86 (-0.14) 5.02 (-0.39) 

AEDI1200 10.7 (-0.73) 

  

1.26 (-0.04) 1.56 (-0.20) 2.96 (-0.15) 5.12 (-0.39) 

AREDI2400 11.1 (-0.73) 1.28 (-0.08) 1.65 (-0.09) 3.25 (-0.17) 5.08 (-0.44) 

ABER2D 10.9 (-0.78) 1.25 (-0.06) 1.62 (-0.18) 3.14 (-0.20) 5.13 (-0.41) 

ABERZONAL 10.9 (-0.67) 1.26 (-0.13) 1.60 (-0.05) 3.04 (-0.16) 5.21 (-0.37) 

Export production with a 100-year average climatology and a depth of 100m, and the change in 
consumption in parentheses with doubled CO2, across the model suite. Changes are seen 40-140 years after 
doubling. 
 



How do we properly parameterize eddy mixing 
within an earth system model to simulate realistic 
results? 

 What we learned: 
• The presence of eddy propagation tends to suppress mixing without 

changing the eddy kinetic energy. 
• Strongly sheared currents  produce eddy propagation relative to waters 

away from the current center – must focus on boundary currents. 
• We need a better understanding of anisotropy of the eddy field. 



Taylor 
Diagram 



What is driving changes in deoxygenation under 
climate change? 
 • What we learned: 

• Export production decrease explains decreasing O2 concentration 
in the low latitudes, but it does not explain the decreases in the 
high latitudes and within the deep ocean. 

• Freshwaters inputs and outgassing enhance salinity stratification, 
producing a density stratification that prevents deep ocean 
convection. 

• Physical dynamics governs the changes seen in oxygen 
concentration and thus, hypoxic and suboxic volume. 

 



Future work 
• Tripling CO2 from pre-industrial values 

• Change in volume 
• Change in dynamical pump and/or biological pump 
• Change regionally 

 

• Climate Change effects on biological pump and therefore, future 
ocean sequestration 

• Implications on Nationally Determined Contributions (NDCs) from Parties that 
ratified the Paris Agreement 

• Change in phytoplankton biomass 
• Biological pump change and its effects on the global carbon cycle 
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