
Ecosystem Approach to Management (EAM): a Canadian example of pragmatism undermined by "hubris", and lack of explanatory power

Mike Sinclair
Bedford Institute of Oceanography
Dartmouth, Nova Scotia
Canada

Presentation Outline

- Scotian Shelf and Georges Bank examples of ecosystem approaches to Integrated Management
- Criticisms of our implementation approaches
- Description of a "regime shift" in the late 1980s
- Controversy on the role of grey seals in the "regime shift"
- Conclusions

Eastern Scotian Shelf Integrated Management Area (ESSIM)

Broader Conservation Objectives

Maintain Productivity

 do not cause unacceptable reduction in productivity so that components can play their role in the functioning of the ecosystem

Preserve Biodiversity

 do not cause unacceptable reduction in biodiversity in order to preserve the structure and natural resilience of the ecosystem

Protect Habitat

 do not cause unacceptable modification to habitat in order to safeguard both physical and chemical properties of the ecosystem

Management Area Objectives

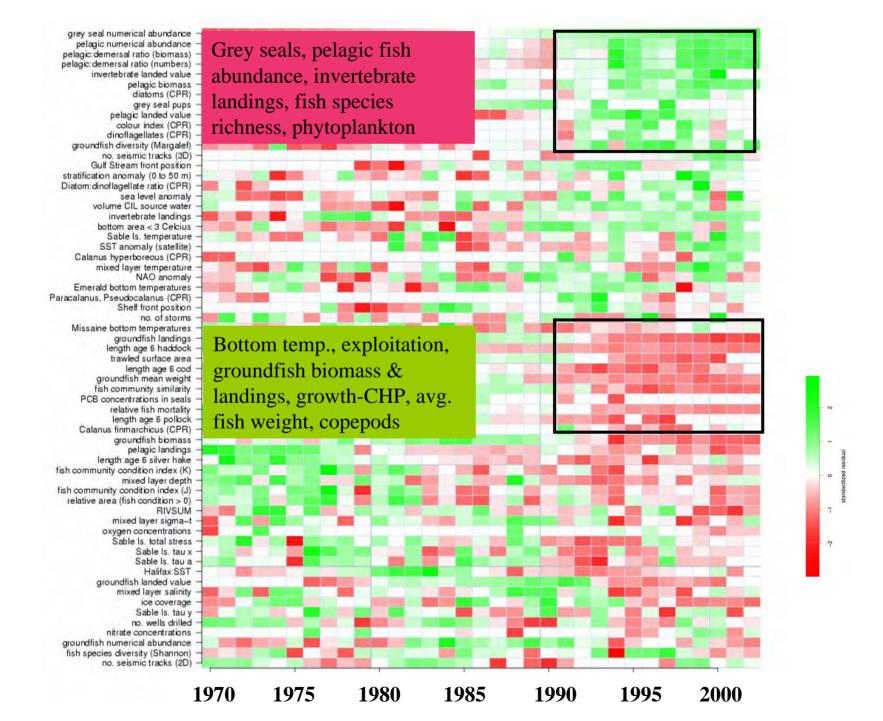
ATTRIBUTES	OBJECTIVES STRATEGIES with associated pressures	MANAGED ACTIVITIE	ES TACTICS
yield biomass recruitment size/age structure spatial extent spatial occupancy population richness predator forage community assemblage size spectrum trophic structure 'special species' habitat type spectrum 'special places' breeding behavior organism health	Productivity • Keep fishing mortality moderate - Promote positive biomass change when biomass is low - Manage discards for all harvested species • Allow sufficient escapement from exploitation of spawning biomass • Limit disturbing activity in spawning areas/seasons • Control alteration of nutrient concentrations affecting primary production at the base of the food chain by algae Biodiversity • Control incidental mortality for all non-harvested species • Minimize unintended transmission of invasive species • Minimize unintended transmission of invasive species • Distribute population component mortality in relation to component biomass Habitat • Manage area disturbed of bottom habitat • Limit introduction of pollutants in habitat • Limit introduction of pollutants in habitat • Minimize deaths from structures/equipment/lost gear • Control noise and light disturbance	Groundfish Herring Salmon Fishery Fishery Aquaculture Salmon Salmon Salmon Aquaculture Salmon Salmon Aquaculture Salmon Salmon Salmon Salmon Aquaculture Salmon Salm	catch control effort control gear specification,

Preliminary Evaluation of Georges Bank FMPs

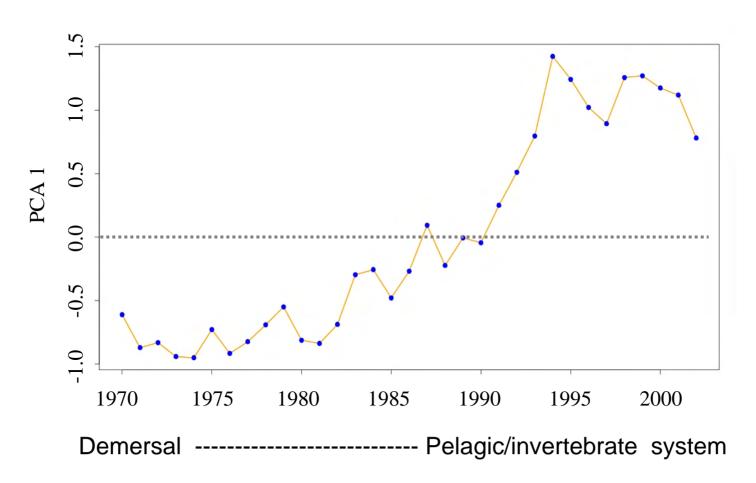
		GF	HF	SF	L/CF
Productivity					
<u>Primary</u>	Limit alteration of essential nutrient concentrations affecting primary production				
<u>Community</u>	Limit trophic level catch biomass with respect to trophic demands of higher levels				
	Limit total catch biomass within system production capacity				
<u>Population</u>	Keep <i>fishing mortality</i> moderate				
	Permit sufficient spawning biomass to evade exploitation				
	Promote positive biomass change when biomass is low				
	Manage <u>% size/age/sex</u> of capture				
	Prevent disturbing activity in spawning areas/seasons				
	Manage discarded catch				
Biodiversity					
Biotope/seascape	Limit <u>% area disturbed</u> of seascape/biotope types				
<u>Species</u>	Limit incidental bycatch or mortality				
	Minimize <i>change in distribution</i> of invasive species				
<u>Population</u>	Distribute population <u>component catch as a % of component biomass</u>				
Habitat					
<u>Bottom</u>	Limit <u>% area disturbed</u> of habitat types				
Water Column	Limit amounts of contaminants, toxins and waste introduced in habitat				
	Minimize amount of lost of gear				
	Control noise level/frequency with respect to species of risk				

- Blue: high relevance that currently receive attention
- Red: high relevance & require attention
- · Others: of low relevance

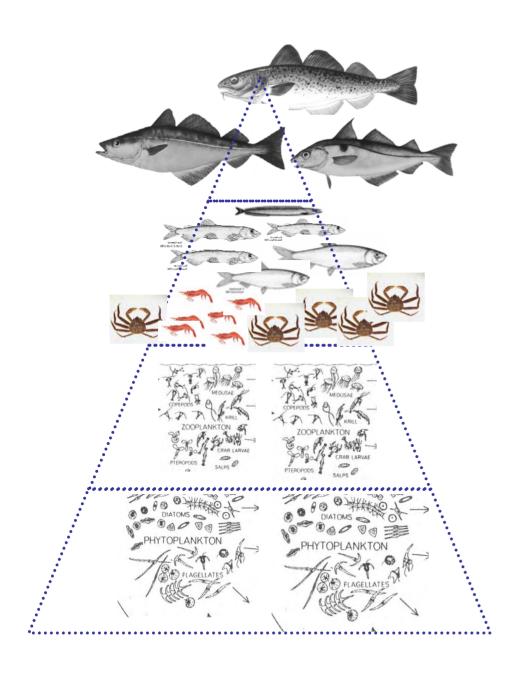
Biodiversity & Habitat

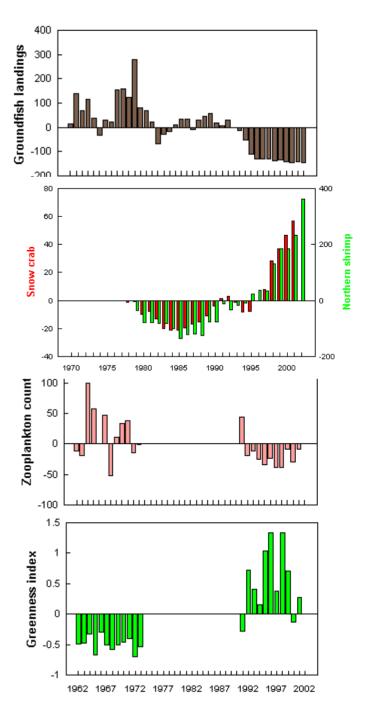

		Activities												
Strategies with associated <u>pressures</u>	Management Unit	GRO-OTB	GRO-LLS/LHP	GRO-GNS	YTF-OTB	SCA-DR	LBA-FPO	CRR-FPO	SWO-LL	SWO-HAR	BFT-LTL/LHP	BFT-HAR	HER-PS	HER-OTM
Control incidental mortality for all non-	4X5Zc white hake													
harvested species	WWW.577 1		,				1	1						_
	4VWX5Zc cusk	1	1			1								
	Atlantic wolfish		1			1								_
	spotted wolfish	1	7		,	1								- 1
	5Z other flounders	1	,		1	1								1
	winter skate	1	1		1	1								V
	thorny skate	1	1	,	1	1								
	barndoor skate	1												
	smooth skate													
	spiny dogfish													
	blue shark										\checkmark			
	basking shark													
	porbeagle shark													
Minimize unintended transmission of														
invasive species														
Distribute population component mortality														
in relation to component biomass														
Manage <u>area disturbed</u> of bottom habitat	Coral Conservation Area													
Limit introduction of pollutants in habitat														
Minimize deaths from												Ī		
structures/equipment/lost gear														
Control noise and light disturbance														

What does EAM mean for fisheries under this approach?


- In addition to concern about impacts of fishing on harvested resources
 - Impacts of fishing on components of ecosystem other than harvested resources
 - Manage by-catch & bottom contact; consider impacts on additional ecosystem attributes
 - Implications of environmental forces and prevailing ecosystem conditions on how fishing is conducted
 - Review references wrt changes in growth, mortality, species interactions, etc.

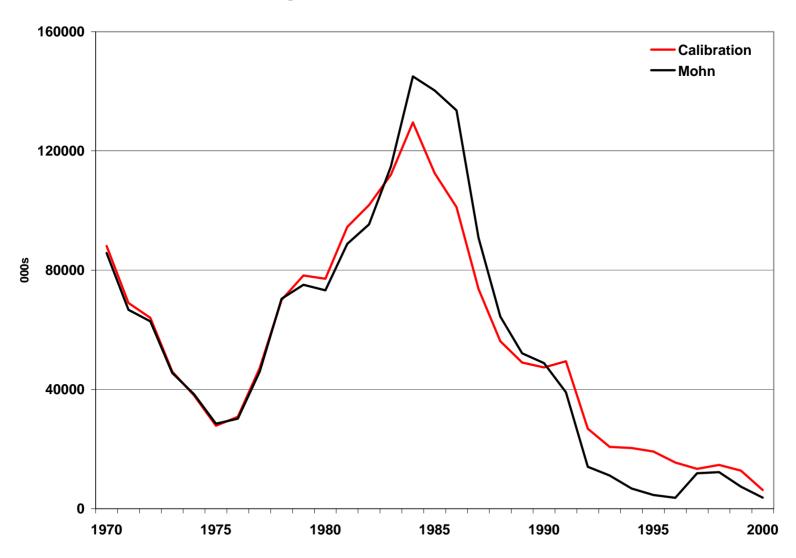
Some Shortfalls of Approach

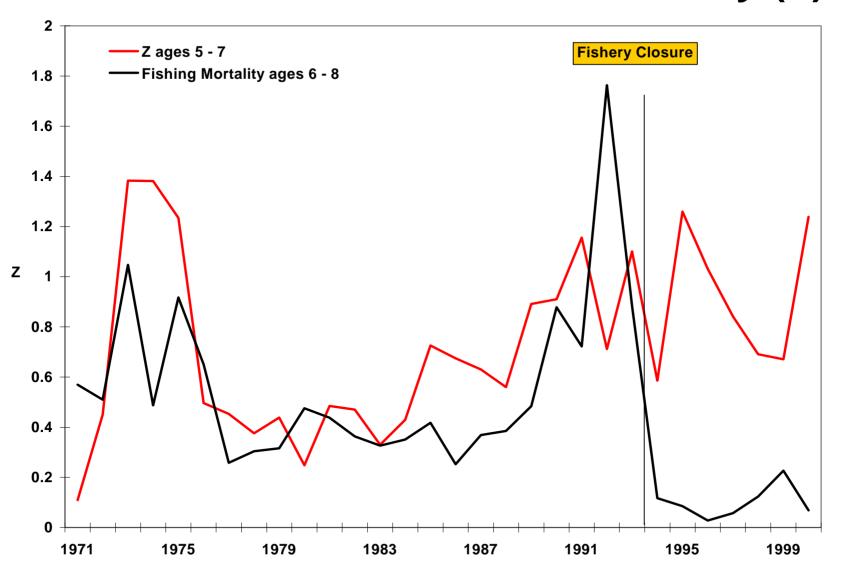

- Focused on needs by individual conservation objective
- Lack of attention to ecological interactions and ecosystem structure/function issues
- "Ecological risk analysis" for prioritization of issues not done
- Socio-economic issues not considered in an integrated manner



Index of Ecosystem Change

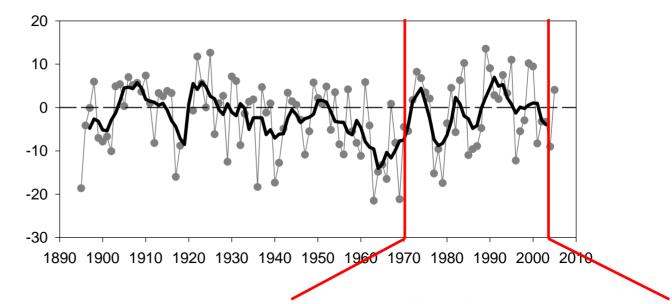
Clear shift in ecosystem state based on 60+ metrics



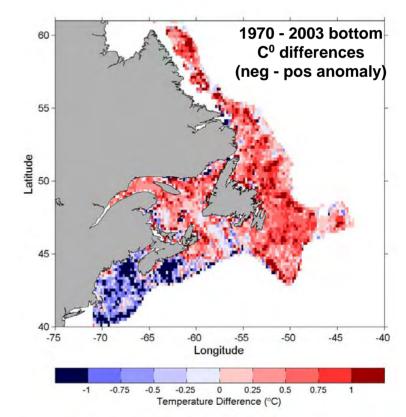

Key Related Issues for Interpretation of Trophic Cascade and Regime Shift

- What has caused the temporal changes in natural mortality of larger predators on the eastern Scotian Shelf since the late 1980s?
- What has caused the lack of recovery of cod in this area since the fishery closure in 1993?

Cod Abundance Trends: Fishing, Climate Variability, and Seal Predation?

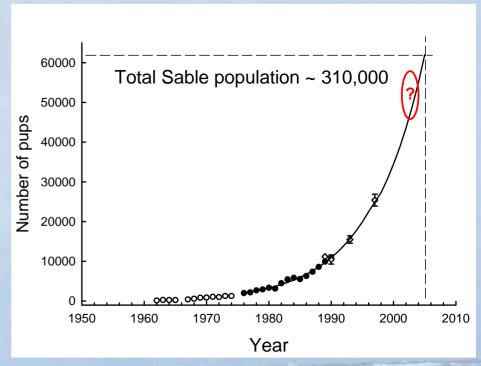


Trends in 4VsW Cod Total Mortality (Z)

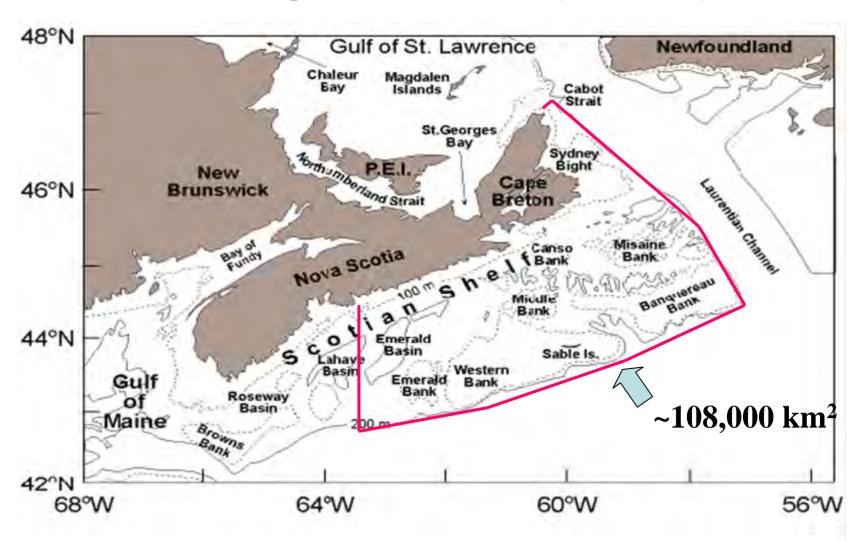


No decline in Z of older ages following moratorium: lack of compelling explanation

NAO Winter Anomaly



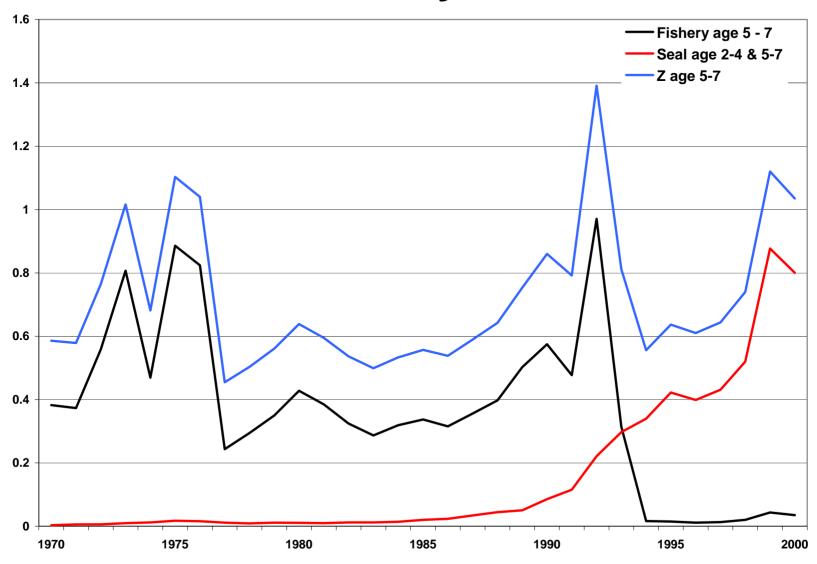
- Linkage of Scotian Shelf with larger North Atlantic atmospheric system
 - Different response to NAO north & south of Halifax


Grey Seal Population Size

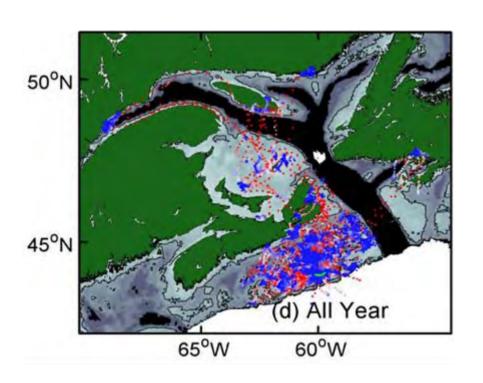
- ~370,000 grey seals in Canadian Atlantic waters
- Today roughly 700,000 t of prey consumed each year compared to 6,000 t 40 years ago

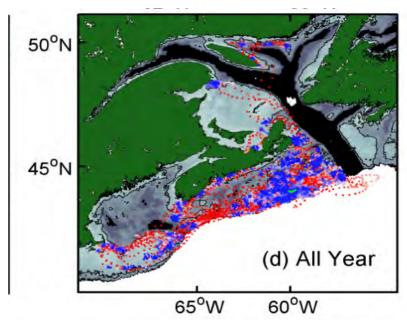
Eastern Scotian Shelf Integrated Management Area (ESSIM)

Controversy on Role of Grey Seals


Summary of % Cod in Seal Diet

Cod Biomass


<u>e</u>	
\Box	
.⊑	
0	
0	
<u>ر</u>	
8	


		V. Low & Low	Med – Low	Medium
15+	%	16.7, 21.7	15.3, 16.0	21.3, 22.8
		25.9, 30.9	17.9, 22.0	
			25.0, 28.4	
			43.5	
5 – 15	5 %	6.6, 9.6		13.5. 13.6
		9.8, 10.3		
		12.8		
0 - 5	%	1.1	4.2	

Seal and Fishery Induced Cod Mortality Trends

Adult Grey Seal Foraging: females left, males right (Breed et al 2009)

Concluding Points

Pragmatic: an evolutionary strategy to EAM well received by Industry and management

Hubris: earlier over-confidence in single species models by stock assessment scientists still a legacy, and an important lesson for ecosystem level models

Lack of explanatory power on decadal scale ecosystem changes in ESSIM area: a challenge to credibility of scientific advice during implementation of EAM