Ecosystem Approach to Management (EAM): a Canadian example of pragmatism undermined by "hubris", and lack of explanatory power Mike Sinclair Bedford Institute of Oceanography Dartmouth, Nova Scotia Canada ### **Presentation Outline** - Scotian Shelf and Georges Bank examples of ecosystem approaches to Integrated Management - Criticisms of our implementation approaches - Description of a "regime shift" in the late 1980s - Controversy on the role of grey seals in the "regime shift" - Conclusions # Eastern Scotian Shelf Integrated Management Area (ESSIM) ### **Broader Conservation Objectives** ### Maintain Productivity do not cause unacceptable reduction in productivity so that components can play their role in the functioning of the ecosystem ### Preserve Biodiversity do not cause unacceptable reduction in biodiversity in order to preserve the structure and natural resilience of the ecosystem ### Protect Habitat do not cause unacceptable modification to habitat in order to safeguard both physical and chemical properties of the ecosystem ### **Management Area Objectives** | ATTRIBUTES | OBJECTIVES STRATEGIES with associated pressures | MANAGED ACTIVITIE | ES TACTICS | |---|---|--|--| | yield biomass recruitment size/age structure spatial extent spatial occupancy population richness predator forage community assemblage size spectrum trophic structure 'special species' habitat type spectrum 'special places' breeding behavior organism health | Productivity • Keep fishing mortality moderate - Promote positive biomass change when biomass is low - Manage discards for all harvested species • Allow sufficient escapement from exploitation of spawning biomass • Limit disturbing activity in spawning areas/seasons • Control alteration of nutrient concentrations affecting primary production at the base of the food chain by algae Biodiversity • Control incidental mortality for all non-harvested species • Minimize unintended transmission of invasive species • Minimize unintended transmission of invasive species • Distribute population component mortality in relation to component biomass Habitat • Manage area disturbed of bottom habitat • Limit introduction of pollutants in habitat • Limit introduction of pollutants in habitat • Minimize deaths from structures/equipment/lost gear • Control noise and light disturbance | Groundfish Herring Salmon Fishery Fishery Aquaculture Salmon Salmon Aquaculture Salmon Aquaculture Salmon Salmon Aquaculture Salmon Salmon Salmon Salmon Aquaculture Salmon Salm | catch control effort control gear specification, | # Preliminary Evaluation of Georges Bank FMPs | | | GF | HF | SF | L/CF | |-------------------|--|----|----|----|------| | Productivity | | | | | | | <u>Primary</u> | Limit alteration of essential nutrient concentrations affecting primary production | | | | | | <u>Community</u> | Limit trophic level catch biomass with respect to trophic demands of higher levels | | | | | | | Limit total catch biomass within system production capacity | | | | | | <u>Population</u> | Keep <i>fishing mortality</i> moderate | | | | | | | Permit sufficient spawning biomass to evade exploitation | | | | | | | Promote positive biomass change when biomass is low | | | | | | | Manage <u>% size/age/sex</u> of capture | | | | | | | Prevent disturbing activity in spawning areas/seasons | | | | | | | Manage discarded catch | | | | | | Biodiversity | | | | | | | Biotope/seascape | Limit <u>% area disturbed</u> of seascape/biotope types | | | | | | <u>Species</u> | Limit incidental bycatch or mortality | | | | | | | Minimize <i>change in distribution</i> of invasive species | | | | | | <u>Population</u> | Distribute population <u>component catch as a % of component biomass</u> | | | | | | Habitat | | | | | | | <u>Bottom</u> | Limit <u>% area disturbed</u> of habitat types | | | | | | Water Column | Limit amounts of contaminants, toxins and waste introduced in habitat | | | | | | | Minimize amount of lost of gear | | | | | | | Control noise level/frequency with respect to species of risk | | | | | - Blue: high relevance that currently receive attention - Red: high relevance & require attention - · Others: of low relevance ### Biodiversity & Habitat | | | Activities | | | | | | | | | | | | | |--|-------------------------|------------|-------------|---------|---------|--------|---------|---------|--------|---------|--------------|---------|--------|----------| | Strategies with associated <u>pressures</u> | Management Unit | GRO-OTB | GRO-LLS/LHP | GRO-GNS | YTF-OTB | SCA-DR | LBA-FPO | CRR-FPO | SWO-LL | SWO-HAR | BFT-LTL/LHP | BFT-HAR | HER-PS | HER-OTM | | Control incidental mortality for all non- | 4X5Zc white hake | | | | | | | | | | | | | | | harvested species | WWW.577 1 | | , | | | | 1 | 1 | | | | | | _ | | | 4VWX5Zc cusk | 1 | 1 | | | 1 | | | | | | | | | | | Atlantic wolfish | | 1 | | | 1 | | | | | | | | _ | | | spotted wolfish | 1 | 7 | | , | 1 | | | | | | | | - 1 | | | 5Z other flounders | 1 | , | | 1 | 1 | | | | | | | | 1 | | | winter skate | 1 | 1 | | 1 | 1 | | | | | | | | V | | | thorny skate | 1 | 1 | , | 1 | 1 | | | | | | | | | | | barndoor skate | 1 | | | | | | | | | | | | | | | smooth skate | | | | | | | | | | | | | | | | spiny dogfish | | | | | | | | | | | | | | | | blue shark | | | | | | | | | | \checkmark | | | | | | basking shark | | | | | | | | | | | | | | | | porbeagle shark | | | | | | | | | | | | | | | Minimize unintended transmission of | | | | | | | | | | | | | | | | invasive species | | | | | | | | | | | | | | | | Distribute population component mortality | | | | | | | | | | | | | | | | in relation to component biomass | | | | | | | | | | | | | | | | Manage <u>area disturbed</u> of bottom habitat | Coral Conservation Area | | | | | | | | | | | | | | | Limit introduction of pollutants in habitat | | | | | | | | | | | | | | | | Minimize deaths from | | | | | | | | | | | | Ī | | | | structures/equipment/lost gear | | | | | | | | | | | | | | | | Control noise and light disturbance | | | | | | | | | | | | | | | # What does EAM mean for fisheries under this approach? - In addition to concern about impacts of fishing on harvested resources - Impacts of fishing on components of ecosystem other than harvested resources - Manage by-catch & bottom contact; consider impacts on additional ecosystem attributes - Implications of environmental forces and prevailing ecosystem conditions on how fishing is conducted - Review references wrt changes in growth, mortality, species interactions, etc. ### Some Shortfalls of Approach - Focused on needs by individual conservation objective - Lack of attention to ecological interactions and ecosystem structure/function issues - "Ecological risk analysis" for prioritization of issues not done - Socio-economic issues not considered in an integrated manner ### **Index of Ecosystem Change** Clear shift in ecosystem state based on 60+ metrics # Key Related Issues for Interpretation of Trophic Cascade and Regime Shift - What has caused the temporal changes in natural mortality of larger predators on the eastern Scotian Shelf since the late 1980s? - What has caused the lack of recovery of cod in this area since the fishery closure in 1993? # Cod Abundance Trends: Fishing, Climate Variability, and Seal Predation? ### **Trends in 4VsW Cod Total Mortality (Z)** No decline in Z of older ages following moratorium: lack of compelling explanation ### NAO Winter Anomaly - Linkage of Scotian Shelf with larger North Atlantic atmospheric system - Different response to NAO north & south of Halifax ### **Grey Seal Population Size** - ~370,000 grey seals in Canadian Atlantic waters - Today roughly 700,000 t of prey consumed each year compared to 6,000 t 40 years ago # Eastern Scotian Shelf Integrated Management Area (ESSIM) ### Controversy on Role of Grey Seals ### **Summary of % Cod in Seal Diet** #### **Cod Biomass** | <u>e</u> | | |----------|--| | \Box | | | .⊑ | | | 0 | | | 0 | | | <u>ر</u> | | | 8 | | | | | V. Low & Low | Med – Low | Medium | |--------|----------|--------------|------------|------------| | 15+ | % | 16.7, 21.7 | 15.3, 16.0 | 21.3, 22.8 | | | | 25.9, 30.9 | 17.9, 22.0 | | | | | | 25.0, 28.4 | | | | | | 43.5 | | | 5 – 15 | 5 % | 6.6, 9.6 | | 13.5. 13.6 | | | | 9.8, 10.3 | | | | | | 12.8 | | | | 0 - 5 | % | 1.1 | 4.2 | | # Seal and Fishery Induced Cod Mortality Trends # Adult Grey Seal Foraging: females left, males right (Breed et al 2009) ### **Concluding Points** Pragmatic: an evolutionary strategy to EAM well received by Industry and management Hubris: earlier over-confidence in single species models by stock assessment scientists still a legacy, and an important lesson for ecosystem level models Lack of explanatory power on decadal scale ecosystem changes in ESSIM area: a challenge to credibility of scientific advice during implementation of EAM