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Common Murre (Uria aalge)

 Chiefly piscivorous 
 Dive up to 150 m 
 Produce < 1 chick per year 
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Objectives 

Determine whether variation in isotopic signatures of 
common murres reflect variation in coastal upwelling 
conditions and summer diet  
Decipher mechanisms by which physical forcing and 
biological production affects upper trophic level 
consumers   
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Murre Diets: stable isotope analysis 
2004-2011 
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Murre Diets: digital photographs 

Spotting scope 

Digital SLR camera 

2007-2011 
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smelt herring or 
sardine 

Northern anchovy 

sandlance 
surfperch cod flatfish 
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Murre Chick Diets 
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Prey Gradients 
 

Herring in warmer years (+ SST, + PDO) 
Sandlance in years with weaker N Pacific High (- NOI) 
Smelts in years with a stronger N Pacific High (+ NOI) 

 

Sand lance Smelts 

Smelts 

Herring Herring 

Smelts Sand lance 

Gladics et al. 2012, ms 
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Murre Isotopes 
δ1

5 N
 

δ13C 
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Murre Isotopes vs. Upwelling Index 
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Isotopes vs. Upwelling Index 

Month 4,  r = - 0.61, p = 0.11  Months 5-6,  r = - 0.92, p = 0.001  
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Isotopes vs. Upwelling Index 

Months 5-6,  r = - 0.92, p = 0.001  

dinoflagellate 

diatom 
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Ecosystem Impacts 



Prey Species vs. Stable Isotopes 
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Prey Species PCA 
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Prey Species vs. Stable Isotopes 
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Prey Species vs. Stable Isotopes 

15.5 16 16.5 17 17.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2007

2008

2009

2010

2011

P
C

 2
 o

f 
d

ie
t

Murre 
15

N

PC 2 r = 0.87983 p = 0.049097PC 2, r = 0.88, p = 0.05  

PC2 of diet vs. δ13C 
r = 0.082, p = 0.896 



Introduction Objectives Methods Results Conclusions 

Stable Isotopes vs. Reproductive Success 

δ15N vs. Repro. Succ:  r = -0.256, p = 0.678 
 
δ13C vs. Repro. Succ: r = -0.460, p = 0.436 

Roy Lowe, USFWS 
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Conclusions 

  Variation in upwelling and diet affects the isotopic signature of 
murre diets during the summer breeding season 

 Murre δ15N values can vary by 1 trophic level among years, even 
though their diet is strictly forage fishes 

 δ15N correlated most strongly with physical forcing (upwelling) 

 δ13C correlated most strongly with prey species consumed 
(spatial and source water variability?) 

Signals reflecting physical forcing and biological production regimes 
that propagate through the food web are measurable within a major, 

upper trophic level consumer on the Central Oregon Coast 
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