High-frequency variability of dissolved oxygen in the subpolar North Pacific

PICES Annual Meeting 2012 (POC-P-8562)

Yohei Takano(Georgia Tech)
Taka Ito(Georgia Tech) and Curtis Deutsch(UCLA)

<u>Acknowledgements</u>: Ken Johnson(MBARI), Mike Alexander(NOAA), Matt Newman(NOAA), Yisen Zhong(GT) and Kevin Grise (LDEO)

<u>Background</u>

- Dissolved Oxygen (DO) is a widely observed tracer
- It responds to both physical and biological change
- Existing DO observational studies are mainly focusing on seasonal and longer timescales

New opportunity for monitoring high-frequency variability

- DO and NO₃ sensors on profiling floats(Apex/ISUS)
- Increased measurement frequency (~70 times/year)
- Short-timescale analysis

Main causes of DO variability

<u>Objective</u>

 Determine and understand highfrequency variability of the DO and NO₃ in Gulf of Alaska

Apex/ISUS Float Data

- Location(OSP, 50°N, 145°W)
 - Time period9/2008 8/2011every 5 days
 - Vertical coverage surface 1000m T,S,DO,NO₃

Data provided by Ken Johnson, Johnson et al., 2012, submitted

Apex/ISUS Float Data

Data provided by Ken Johnson, Johnson et al., 2012, submitted

Background Sea Level Anomaly (SLA)

Trajectory(ETOPO1) AVISO SLA Hovmöller

♦ No wave propagation signal in SLA at 145°W

SLA from http://www.aviso.oceanobs.com/en/ ETOPO1 from http://www.ngdc.noaa.gov/mgg/global/global.html

Observed Tracers

High-frequency Variability in the Main Thermocline

Power Spectrum of the Thermocline DO and NO₃

Indications from the Power Spectrum

- Mesoscale and sub-mesoscale eddies, inertial motion or tides
- Aliased tides or inertia oscillation

Aliased Spectral Peak

Aliased Power Spectrum

Aliased Internal Processes

- Inertial motion (simply sine wave) based on latitude in Gulf of Alaska can generate similar spectral peak (shown in the previous slide) as an aliased signals
- Internal wave (e.g. M₂ tide generated)
 has similar frequency which could also
 result in aliased signals

Correlation between Thermocline DO and Surface Properties

Variables	5-day	10-day	15-day	20-day	25-day
MLD	-0.07	-0.08	0.12	0.06	-0.18
SST	-0.08	0.02	0.00	-0.04	0.07
Surface O_2	-0.16	0.12	0.03	0.05	-0.13
Surface NO_3	0.00	0.01	0.04	-0.03	-0.10
SLA	-0.08	0.06	0.05	-0.08	0.04
NPP(8-day)	-0.04	-0.08	0.08	0.04	-0.01

No evidence of biologically or eddy driven DO variability

^{*} SLA and NPP are downloaded from AVISO and OSU, respectively.

http://www.aviso.oceanobs.com/en/

http://www.science.oregonstate.edu/ocean.productivity/index.php

Conclusions

- High-frequency variability is observed in DO with a 17-day spectral peak
- No correlation with surface physical and biological processes
- Spectral peak may come from aliased internal processes