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Variation of circulation strength and energetics
of mesoscale motions in the Japan/East Sea

discussed at the PICES Annual Meetings, 2009-2011,
were based on sea level anomalies from satellite altimetry measurements.



Seasonal strength variation of the mean currents
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The meridional sea level gradient is sharpest in October and weakest in March,
Rate of the gradient change is 3 months ahead, with extremes in early July and late December.



Mesoscale energetics: eddy kinetic energy (EKE)

~ Circulation strength
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EKE is highest in October — November and lowest March — April - same as
seasonal variation of the circulation strength - shear instability is important.



EKE generation due to instability of the mean
currents and interactions with bathymetry.
Shear instability is important



Limitations

T/P - Jason period ~ 10 days.
ERS — EnviSAT period ~ 35 days.
Gtidded weekly data.
Low-frequency EKE with temporal scales > 2-4 months
(filtering necessary for noise removing).

Life time of eddies in the northern Sea is from 1-2 weeks to 1-2 months
(Lobanov, Ladychenko, 2002-2012).

Better temporal resolution is needed.
It is provided by satellite infrared imagery —
daily SST data are available.



Thermal contrasts from satellite infrared imagery
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Eddy tracking, Wavelet transform of anomalies from daily mean
estimations of eddy SST for 2006-2010 averaged south and north of the
sizes, life times, etc... Subpolar Front: stronger oscillations in the warm

season (Belonenko, Bloshkina, 2012).



Purpose

Detailed analysis of intraseasonal SST
variability, estimation of time scales and
Its relationships with the circulation in
the Japan/East Sea



Data

Daily 1/4°-gridded SST from Japan Meteorological Agency,
from October 1993 onwards.

Area: 35.5°- 48°N, 127.5°-142°E

Band-pass filtering, periods retained from 2 weeks through 4 months:
for noise removing (less than 2 weeks) and
removing variability from semiannual to longer scales.

Scale range consistent with life times of with mesoscale eddies.

Wavelet transform using Morler mother wavelet of the 6-th order
Is applied for filtering and time scale detection.



EOF analysis

EOF analysis: a set of orthogonal patterns focused on areas of large variance:

X(r, t) = 2 A (r)-B,(t), where X(r, t) is original signal, A,(r) is eigenvector, B,(t)
Is principal component (PC).

Covariances for computing eigenvectors - weaker signals can be lost.
Correlations (normalized X) = detection of small amplitude anomalies.



Spatial patterns: intraseasonal SST variabllity
In the entire Japan Sea
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Diffuse spatial patterns: succession of 2D harmonic functions. |
Mode 1: SST anomalies in the entire Sea.
Mode 2: lower/higher SST in the northern/southern sea
(stronger northward of 44°N).
Mode 3: lower/higher SST in the western/eastern Sea
(stronger in the NW area off the south Primorye
and North Korea).




Temporal patterns: large means,
small oscillations strengthening in the warm season
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Power (JA?) Temporal_ fu_nc@ions:
characteristic time scales
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Periods 60-120 days

Strengthening in the warm season,
interannual variability.

Stretched along the period (y) axis,
even if the Morlet mother wavelet is
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Global spectra: mean time scales
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Mode 1: 90 days
Mode 2: 65-70 days
Mode 3: 105-110 days




Period-averaged wavelet power for SST vs. Rate
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Rate of sea level change is highest 3 months before the mean
currents are strongest and EKE largest.

Intraseasonal SST oscillations are strongest during the period
of the mean currents strengthening and EKE increase.



Correlations: SST wavelet power vs. SLA and Rate

SST power vs. sea level anomaly SST power vs. sea level rate
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Time scales of the SST wavelet power
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Wavelet power of the wavelet power
Weak oscillations: early 2000s
Annual

Quasi-biennial:
Mode 1: shifting from 3 to 2 years in 2002-2004
Mode 3: strengthening since 2003

Interannual:
Mode 2: 3-4 yrs since 2003
Mode 3: 4-5 yrs, strengthening since 2002




Conclusion

Intraseasonal SST oscillations in the Japan/East Sea intensify in the
warm season and are strongest in mid summer when the mean
currents are still strengthening and EKE increasing.

*Mean time scales of intraseasonal SST oscillations are 90 days In
the entire Sea, 65-70 days in the northern Sea, and 105-110 days in
the NW area off the southern Primorye — North Korea.

*The strength of SST oscillations manifests strong interannual
variability on the quasi-biennial and 3-5 yrs time scales.

*The intraseasonal SST oscillations were weak in early 2000s.



Concluding remarks

Periods 90-110 days are consistefit with life-timgs of mesoscale eddies.

Structure sizes > 25 km (SST grid8ize) — but cap be averaged
manifestations of sub-mesoscale stiuctures - diffuse spatial patterns.

(Ostrovskii, 1995) — signatures of
(in fall 1993 and spring 1994).

ring and mixing at the surface
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Original Mesoscale Sub-mesoscale

Infrared image in fall 1993 and its fragments low-pass filtered
by 2D wavelet transform. Structure sizes < 30 km.
Evidence of the 3D turbulence from the spectral power
(Ostrovskii, 1995).

THANK YOU!
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