Annual Meeting of the North Pacific Marine Science Organization (PICES), Hiroshima, Japan, 12-21 October, 2012 Effects of natural and anthropogenic stressors in North Pacific ecosystems: Scientific challenges and possible

Sensing marine life and livelihoods at the seashore

An integrated monitoring network for the Wadden Sea, a coastal UNESCO World Heritage site

Catharina J.M. Philippart¹, Martin J. Baptist², Taco de Bruin³, Michiel N. Daams⁴, Bruno J. Ens⁵, Eelke O. Folmer¹, Lucien Hanssen⁶, Folkert de Jong⁷, Rob Loke², Olga Lyashevska¹, Jaap van der Meer¹, Pim Vugteveen⁶, and Frans J. Sijtsma⁴

- ¹ Department of Marine Ecology, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- ² IMARES Wageningen UR, Den Burg, The Netherlands
- ³ Data Management Group, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- ⁴ Department of Economic Geography, Faculty of Spatial Sciences, Groningen, The Netherlands
- ⁵ Coastal Ecology Team, SOVON Dutch Centre for Field Ornithology, Den Burg, The Netherlands
- ⁶ Department of Environmental Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- ⁷ Common Wadden Sea Secretariat, Wilhelmshaven, Germany

www.walterproject.nl

Wadden Sea

- •shaped by Holocene sea level rise since its origin 7,500 years ago
- •temperate-climate sandy barrier coast in NW Europe
- •coastal stretch of approximately 500 km
- •total area of 14,700 km² (including 11,200 km² nature reserve)
- •largest unbroken stretch of sandflats and mudflats worldwide
- •UNESCO world heritage site since June 2009

Wolff et al. 1983, Reise et al. 2010, Lotze et al. 2005

Wadden Sea - ecology

- •dunes, salt-marshes & tidal flat ecosystems
- •highly productive phytoplankton & microphytobenthos
- extensive seagrass, mussel and oyster beds
- nursery for flatfish
- stopover for migratory birds
- •mammals (harbour & grey seals, harbour porpoises)

Wolff et al. 1983, Reise et al. 2010

Wadden Sea - economy

- approximately 75 000 inhabitants on the islands (NL+GE+DK)
- population decline (as in other rural areas in NW Europe)
- •rural development, increasingly shaped by interregional economics
- exploitation of natural (living) resources (gas, shellfish & shrimps)
- strong tourism economy (the islands and the sea)
- •major ports (Hamburg, Bremen,, JadeWeser in 2012)

Lotze et al. 2005, Butt et al. 2009, Sijtsma et al. 2012

Wadden Sea - monitoring

long-term & large-scale monitoring programs

- •governmental (ministries, provinces, municipalities)
- •science-driven (institutes, universities, volunteers)
- •impact studies (companies, sectors)

Wadden Sea - monitoring

still not possible to define underlying processes (e.g., cause-effect relationships) nor to answer overarching questions (e.g., impacts of climate change on food web interactions)

- data often not accessible
- •data often not comparable
- some essential parameters missing
- no integration of information (data + knowledge = information)

Wadden Sea Long Term Ecosystem Research

- adaptive monitoring approach
- conceptual models
- integration of spatiotemporal scales
- integration of ecology and socio-economy

Adaptive monitoring:
a new paradigm for longterm research and monitoring

D.B. Lindenmayer & G.E. Likens

Trends in Ecology and Evolution

Effects of biodiversity on ecosystem functioning: a consensus of current knowledge

D.U. Hooper and co-authors

Ecological Monographs 75, 3 - 35 (2006)

Directional changes in ecological communities and social-ecological systems: a framework for prediction based on Alaskan examples

F.S. Chapin III and co-authors

American Naturalist 168, s36-s49 (2006)

24, 482-486 (2009)

STEP 1: nationwide inventories to define the **essential questions** e.g.:

- •will Wadden Sea sediment fluxes keep pace with sea level rise?
- •do anthropogenic nutrient loads affect the carrying capacity for birds?
- •how can mussel and cockle fisheries become sustainable?
- •does cargo turnover further increase due to the new port?
- •will the World Heritage designation lead to more tourism?

Climate Nature Fisheries Harbours Wadden Quality

STEP 2: building conceptual models to define the **essential parameters** e.g.:

STEP 3:

analysing existing observations to define the **essential data** e.g.:

annual spatial variation in area mussel beds as input for understanding spatiotemporal variation in recruitment success

STEP 3:

analysing existing observations to define the essential data e.g.: annual spatial variation in area mussel beds as

input for understanding

variation in recruitment

spatiotemporal

success

clusters of correlation between time series of tidal basins

STEP 4: building a **data portal** to make existing (and future) data available e.g.:

spatiotemporal variation in primary productivity by means of data assimilation of in situ observations, automatic monitoring networks and remote sensing products (satellite & airborne)

IN PLACE project (in prep.)

STEP 5: making a **blueprint** for an integrated monitoring network e.g.:

- technical aspects
- •management structure
- •business plan
- •long-term commitments

STEP 1: Inventory of the main monitoring needs

→ Essential Monitoring Questions

STEP 2: Conceptual models of ecologic & economic

→ Essential Monitoring Variables

STEP 3: Statistical analyses of the existing observations

→ Essential Monitoring Data

STEP 4: Data portal Wadden Sea existing & future observations

→ Essential Information Exchange

STEP 5: Blueprint of the integrated monitoring network

→ Essential Monitoring Network

Wadden Sea monitoring WaLTER fundamentals approach involvement

Walter

essential monitoring network = **mutually beneficial** monitoring network

Partners, Resonance Group & Advice Board

with representatives of major monitoring efforts, e.g., ministries, governmental organizations, scientific research programs, land owners, fisheries, oil & gas companies, large harbor organizations, etc.

All involved need proof to get convinced...!

STEP 1: Inventory of the main monitoring needs

STEP 2: Conceptual models of ecologic & economic

STEP 3: Statistical analyses of the existing observations

STEP 4: Data portal Wadden Sea existing & future observations

STEP 5: Blueprint of the integrated monitoring network

Lighthouse Projects

e.g.,
developing & testing of
"spat fall forecasts" as
a cost-efficient tool for
sustainable mussel
fisheries (jointly with
nature conservation
and fishers)

Apply for an International Long Term Ecosystem Research (ILTER) membership

"ILTER's vision is a world in which science helps prevent and solve environmental and socioecological problems"

Annual Meeting of the North Pacific Marine Science Organization (PICES), Hiroshima, Japan, 12-21 October, 2012 Effects of natural and anthropogenic stressors in North Pacific ecosystems: Scientific challenges and possible

