Ship of Opportunity Sampling of Lower Trophic Levels

Sonia Batten and Tony Walne

In this presentation:

- Traditional CPR sampling
- Pros and cons of SoOp sampling & the CPR approach
- Adding value to the CPR
 - Additional variables
 - The CPR as a platform
- •Operational biological oceanography?

What is a CPR?

- A robust device for collecting surface plankton over large spatial scales
- •capable of operating at high speeds (>20 knots)
- •needs a minimum of attention
- designed for ships of opportunity

Designed by Alister Hardy in the 1920's

An internal cassette fits into the towing body

Pre-loaded with filtering mesh and wire on a fusee to drive the uptake spool

The CPR Survey today

CPR surveys, 1931 to 2011; ~ 1 million samples

Pros and Cons: (note that limitations of the methodology won't be discussed here, too big a topic, but see literature)

- + Cheap!
 - + particularly important for remote ocean regions
 - + can tailor analysis to match funding.
- + Reliable
- + Internally consistent
- + Other instrumentation can be added (see later)
- + Sample archive for future studies
 - Sample analysis is labour intensive
- Lack of control over timing and location
- Liaising with ships
 - low on their priority list
 - discrepancies with info.

Pros and Cons: (note that limitations of the methodology won't be discussed here, too big a topic, but see literature)

- + Cheap!
 - + particularly important for remote ocean regions
 - + can tailor analysis to match funding.
- + Reliable
- + Internally consistent
- + Other instrumentation can be added (see later)
- + Sample as the property of the studies
- Sample analysis is labour intensive
- Lack of control over timing and location
- Liaising with ships
 - low on their priority list
 - discrepancies with info.

Examples of route consistency

Pacific survey, north south transect.

53 separate transects, 2004-2012 High repeatability Pacific survey, east-west transect.

33 separate transects, 2000-2012 Lower repeatability Pros and Cons: (note that limitations of the methodology won't be discussed here, too big a topic, but see literature)

- + Cheap!
 - + particularly important for remote ocean regions
 - + can tailor analysis to match funding.
- + Reliable
- + Internally consistent
- + Other instrumentation can be added (see later)
- + Sample and Landing future studies
 - Sample analysis is labour intensive
- Lack of control over timing and location
- Liaising with ships
 - low on their priority list
 - discrepancies with info.

Example of Ship's log conflict

CPR with a temperature sensor fitted deployed in N Atlantic. Arrows mark ship's log times of shoot and haul – first 2 agree with temperature record, but 4 hour discrepancy with 2nd shoot. What to do?

The CPR as a platform - adding instrumentation

Temperature loggers (most basic) CTD-F (more expensive)

Temperature distributions of two example taxa

Cumulative abundance of warm-water copepods each year, south to north, Mar-Sept, for oceanic region

Updated from Batten & Walne (2011), Journal of Plankton Research

Chlorophyll from the CTD

June 2005

Transect through 2 eddies

Bird/mammal observers

- logistically more complex (e.g. diversion insurance, port of departure/arrival)
- more expensive

Macro-ecology of plankton-seabird associations in the North Pacific Ocean

WILLIAM J. SYDEMAN 1*, SARAH ANN THOMPSON 1, JARROD A. SANTORA 1, MICHAEL EHENRY 1, KEN H. MORGAN 2 AND SONIA D. BATTEN3

¹Farallon institute for advanced ecosystem research, po box 750756, petaluma, ca 94952, usa, ²canadian wildlife service, environment CANADA, C/O INSTITUTE OF OCEAN SCIENCES, FISHERIES AND OCEANS CANADA, 9860 W SAANICH ROAD, SIDNEY, BRITISH COLUMBIA, CANADA AND SIR ALISTER HARDY FOUNDATION FOR OCEAN SCIENCE, CITADEL HILL, THE LABORATORY PLYMOUTH PLI 2PB, UK

Water and Microplankton Sampler (WaMS).

Aimed at smaller size-fraction (nano and pico) plankton community.

Flow cytometry, Molecular probes and barcoding, Harmful Algal Bloom microarrays

Samples have been analysed for HAB species

Can we get to operational biological oceanography?

Two approaches:

- 1.Pacific process a subset quickly (25%)
 - Preliminary data (not QC'd) available within 2 months
- 2. Atlantic process a single transect quickly
 - Analysis of a short transect completed within 16 days (but needed someone to push it along).

Comparison between subsample and final result

For a large area and a summary index, the result is very good

The capabilities for a multi-disciplinary, costeffective sampling program exist. me Mesoscale Altimetry - Mar 24, 2007 Continuous Pla gest sustained marir 100 basin scale (1950-) 50 Placed in rear of CPR Timed water samples and other measurements along

Further information can be found at:

www. globalcpr.org (GACS)

www.sahfos.org (CPR parent organisation)

www.pices.int/projects/tcprsotnp/default.aspx (N Pacific survey and CTD data)

Fisheries and Oceans Canada Pêches et Océans Canada

