

Establishment of a rearing system of larval and juvenile walleye pollock for elucidating their biological properties and responses to environmental changes

Toru Nakagawa¹, Masayuki <u>Chimura</u>², Naoto Murakami¹, Takashi Ichikawa¹, Norio Shirafuji¹, Jun Yamamoto³, Tetsuichiro Funamoto², Ken Mori², Yoshiaki Hiyama² and Toyomitsu Horii⁴

¹Akkeshi Laboratory, Hokkaido National Fisheries Research Institute, FRA

²Kushiro Laboratory, Hokkaido National Fisheries Research Institute, FRA

³Field Science Center for Northern Biosphere, Hokkaido University

⁴Tohoku National Fisheries Research Institute, FRA

Introduction

- Environmental factors controlling recruitment of walleye pollock have attracted great interest
- Laboratory experiments would be effective tool for elucidating the responses of larvae and juvenile pollock to environmental changes
- Feeding and rearing pollock larvae have not succeeded

We conducted experiments to establish the rearing system of pollock from hatching to juveniles

Experimental design

First experiment

- Small tanks (0.5 kL) 5 February-27 March (52days) 5, 8, 11°C
- Large tank (15 kL \rightarrow 45 kL) 8 February-9 °C (0-140 days after hatching)
- Focused on feeding and rearing larvae

Second experiment

- ☐ Large tank (15 kL) 24 March-
 - 5 °C (0-60 days after hatching)
- ➤ We used n-3 highly unsaturated fatty acid (n-3 HUFA) rich rotifers and focused on rearing larvae under the temperatures which wild larvae will be exposed

Collection and incubation of eggs

- Fertilized eggs were obtained from adult fish reared in a tank at Muroran marin station about 450 km west of our laboratory
- Eggs were transferred to our laboratory at blastula-gastrula stage by parcel delivery service
- Incubated with filtered flowing seawater at 5 °C

Rearing condition of first experiment Small tanks (0.5 kL)

- 3 temperatures (5 8 11 °C) with 2 replicate tanks
- Initial density of larvae: 11.0 individuals/L
- Still water (0-14 days after hatching),
 Filtered flowing seawater
 (15-51 days after hatching, 0.2-2.6 exchanges/day)

Rearing condition of first experiment Large tank (15 kL→45 kL)

Temperatures
 8.9°C: 6-140 days after hatching

9.1-18.5°C: 141-235 days after hatching

- Initial density of larvae: 4.2 individuals/L
- Filtered flowing seawater (0.5-4.3 exchanges/day)
- Transferred to 45 kL tank when juvenile reached about 140 mm in total length (183 days after hatching)

Feeds for larvae in the small tanks

Rotifers 10 rotifers/mL stand low temperature (8°C)

Growth and Survival of larvae in the small tanks

Growth and Survival of larvae in the large tank (Red diamond)

Summary of the first experiment

- ✓ We succeeded in feeding and rearing pollock from hatching to juvenile
- ✓ Larvae exposed to higher temperatures grew faster
- ✓ n-3 highly unsaturated fatty acid (n-3 HUFA)
 content of rotifers may be inadequate for larvae
 to survive

Rearing condition of second experiment (15 kL)

- **Temperatures** 5.3°C: 0- 60 days after hatching
 - 6.0-11.7°C: 61-190 days after hatching
- Initial density of larvae: 5.6 individuals/L
- Filtered flowing seawater (0.5-2.9 exchanges/day)
- Food
- Rotifers (enriched with n-3 HUFA rich oil before fed)

10 rotifers/mL : 5-14 mm TL

- ☐ Artemia franciscana nauplii : 7-40 mm
- ☐ Frozen copepod : 14-65 mm
- ☐ Artificial dry diet : 20 mm-

Survival and growth of larvae at 5°C

Growth and survival of larvae were much improved

n-3 HUFA content of rotifers

	Rt-1	Rt-2	Rt-3
Total lipid (%, d.b.)*	9.7	13.3	15.1
EPA (%, d.b.) *	0.8	1.1	1.3
DHA (%, d.b.)*	1.0	1.7	2.4
Σn- 3 HUFA (%, d.b.)*	2.5	4.0	5.0

^{*} On dry matter basis

Rt-1: Rotifers used in **small tanks** of **first** experiment (reconstruction)

Rt-2: Rotifers used in large tank of first experiment

Rt-3: Rotifers used at **second** experiment

Over 4.0% dry weight of n-3 HUFA is needed for good larval growth and survival

Conclusion

- We succeeded in rearing larvae under the temperatures which wild larvae will be exposed
- > n-3 HUFA content of feed is important for growth and survival of larvae
- We can conduct a variety of experiments by using the rearing system established in this study

