The effect of environmental factors on distribution of Walleye pollock (*Theragra chalcogramma*) juveniles in Funka Bay and vicinity, Hokkaido, Japan

Yohei <u>Kawauchi</u> (Hokkaido University), Masayuki Chimura, Takashi Muto, Masamichi Watanobe and Kazushi Miyashita

Transition of food organisms for Japanese walleye pollock stock (JPS)

In juvenile stage (3 – 4 months from hatching). . .

Transition of food organisms

(e.g., Nakatani et al. 2003)

- About 30mm in TL

Neocalanus, Eucalanus etc.

Spatial/temporal matching between juvenile and plankton body size is important (Kawauchi et al. 2011)

Large juv. → Oyashio current water (Deep, Cold and Salty)

Small juv. → Surface water of coastal Oyashio current (Shallow, Warm and Sweet)

They can feed foods appropriate for each body size

If juveniles grow and survive in the optimal environment

- → Larger body size in the after life stages & Low prey
- → Improvement of survival potential to recruitment (Yamamura 2012)

Diel vertical migration of JPS

Diel Vertical Migration (DVM) ... Changing the distribution vertically during day and night (e.g., Tanaka *et al.* 2009)

Pollock juveniles ...

Day: Large aggregation in mid-water

Night: Scatter or float

(Miyashita et al. 2004; Shida et al. 2008)

Stay in the suitable environment using DVM is important

But, not enough knowledge around Funka Bay (FB, Main spawning and feeding ground)

Objectives

- To reveal diel change of juvenile distributions and environments
- To verify the feeding habitat in the transition period

Materials

Period: Mid May 2011

Area: Inside and Outside of FunkaBay

R/V: Ushio-maru & Kinsei-maru (only NORPAC net)

Contents:

- Oceanographic observation by CTD
 - In fixed points & towed points by FMT net
- Acoustic measurement by quantitative echosounder (38kHz, Simrad, in day and night)
 - Assumed that all echo above 100m in depth are juvenile's (Funamoto 2010)
- Collecting juvenile samples in each water-mass
 by FMT net(in day and Night, above and below 33.0psu)
 - -TL mesurement & gastric contentsnalysis
- Collecting zooplankton samples by NORPAC net
 (day, above 33.0psu and all layer)

Lines & points by Ushio-maru

↑ o indicates NORPAC point by Kinsei-maru

*Generalized Additive Model plot

*P value: Tukey-Crammer multiple comparison

*GCW: gastric contents weight, BW: body weight, S: small juvenile, and L: large juvenile

V. Zooplankton composition in the vicinity of Funka Bay

Result & Discussion

In OW, large juv. could feed large planktons

-E. bungii do not performs the significant DVM (Schabetsberger et al. 2000)

Outside of FB, juv. could feed small foods in both water-mass

-Psudocalanus spp. matches chl. a maximum layer (Yamaguchi 1999)

Outside of FB Discussion I Inside of FB Day Night Night Day S-CO Warm Cold **OW**

- Day: Low metabolism in cold water
 Fish aggregation for low prey
- Day: Fish aggregation in mid-water
 Small copepods were fed
- Night: Feeding in warm, bright water
 Large one escape from predator
 Large one descend for large food

Discussion II

In the present study,

Inside of FB: Large Juveniles

Outside of FB: Small juveniles

In winter,

Inside of FB: Warm → High growth

Outside of FB: Cold → Low growth

If pollock can be carried into FB, the growth and survival will be good (Nakatani and Maeda 1988)

Juveniles outside of FB may not grow and survive well

-In late May or June, Psudocalanus spp. reduces in FB (Nakatani and Maeda 1987)

Discussion III

(Modified from Coyle et al. 2011)

Large juv. fed large zoop. more than small one

If juvenile feeds large foods, prey by predator in next life-stage may be fewer (coyle et al. 2011)

-In 00's, large copepods have incrased (Tadokoro 2012)

But

In 2011, the ratio of large juv. was fewer than recent other years

They might not feed large foods well

- They could not survive well in after life-stage?

As the future works,

Interannual difference of survival will be estimated by analyzing each nutritional status

Acknowledgements

Many thanks for...

Prof. M. Ohara,

Dr. O. Shida,

Cap. Y. Kamei & Crews of R/V Ushio-maru,

Crews of R/V Kinsei-maru,

Dr. Y. Ito,

Dr. J. Yamamoto,

Mr. S. Fukui,

Mr. T. Iwamori,

Dr. H. Miyake,

Mr. H. Okumura,

Dr. T. Funamoto,

Dr. Y. Mitani

Dr. H. Takahara,

and all members of LAMECA, Hokkaido University

This study was conducted by:

- Financial support by Fisheries Agency of Japan
- Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows