CAN TEMPERATURE-DEPENDENT GROWTH BE USED TO
MEASURE SECONDARY PRODUCTION OF COPEPODS IN
COASTAL UPWELLING SYSTEMS?

Ruben Escribano

Pamela Hidalgo
PICES, Hiroshima 2012




Copepods as secondary
producers

They dominate virtually all marine systems

They contribute significantly to zooplankton
biomass (usually >60%)

In the food web they capture and transfer C
very fast (short life cycles)

They are main prey of fish and other
predators

Many species.....many ecological capacities---
-many chances to occupy all kind of habitats



Copepods in upwelling systems:
Humboldt Current as an example
Low diversity high abundance and biomass

Large sized copepods present, but usually medium size
and even small copepods dominate (number and
DIOMass)

|arge-sized herbivores are not the main pathway of C,
but omnivore small-sized copepods seem the major
channel for Cin the food web

They usually reproduce year round (continuous
production)

In the spring they feed on diatoms and in the winter
the swicht to an heterotrophic diet.



If food is sufficient to sustain
continuous growth, then we ask:

Can temperature control the dynamics of
copepods in upwelling systems?

Copepods are ectotherms

Development rate is temperature dependent

They show exponential growth, then g depends on
DR, which is T° dependent

DW/DT = Wo Exp (g t)



TEMPERATURE IS A KEY FACTOR FOR COPEPOD ECOLOGY

Temperature and development

Morthern upwelling region off Chile
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COPEPODS IN THE HUMBOLDT CURRENT

Paracalanus indicus
Calanus chilensis
Centropages brachiatus
Acartia tonsa

Calanoides patagoniensis
Eucalanus inermis
Rhincalanus nasutus

| Most species distribute along a

latitudinal gradient of ca 4500 km
This is a temperature range of
about 8 to 25 °C in the upper 50 m

“ Therefore, the HCS is a natural

experiment to test T° effects on
copepods dynamics




Study Area for experimental work
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20 and 10 years of study on
copepod dynamics

Data on oceanographic
variability (time series
studies)

Copepod biomass,
abundance and diversity

In 2002-2003 and 2011
Live samples for
experiments on
development rate and
temperature, using egg
development approach



Egg development experiments (No food
effect)

» Estimating species clutch size, hatching success and
the embryonic development time at controlled
temperatures..T° range in the upper so m layer

= Fitting an equation to egg development rate as a
function of T°

= DR=a (T +a)¢ (Belerhadek equation)
= DR=a(exp®T) (Exponential model)

= Using DR as a proxy to estimate species generation
time (GT)

= Finally, estimating the potential number of
generations a year (NGY)




RESULTS FOR THREE DOMINANT SPECIES

CLUTCH SIZE AND DEVELOPMENT RATE

CLUTCH SIZE= No. of eggs spawned at once per female (within 2 h)

Species Clutch size Hatching success DT

(eggs female-1) €0)) (d)

Mean +SE Mean +SE nl Mean £tSD n2
C. chilensis 29.3::1.97 32.0£3.93 63 1.42-0-074 79

C. brachiatus 43.3::2.43 58.5+4.93 141 1.60::0-058 173




THE RELATIONSHIP BETWEEN CLUTCH SIZE AND DR

CLUTCH SIZE VS DEVELOPMENT RATE

Centropages brachiatus
Calanus chilensis
Paracalanus indicus

40 60 80 100 120 140

CLUTCH SIZE (No eggs Female'l)

C. brachiatus and C. chilensis
similar DR, but larger CS in
the former

P. indicus extremely low CS,
but very high DR

No seasonal effects on CS

No regional effects on CS



SEASONAL AND REGIONAL EFFECTS ON DR OF EGGS

Centropages brachiatus

NORTHERN

O  Winter
— — 95% CL

SOUTHERN
CHILE
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TEMPERATURE (°C)

1) DRis higher in the spring
2) DRis higher in northern Chile

3) warm adapted species

Escribano et al. (submitted)



SEASONAL AND REGIONAL EFFECTS ON DR OF EGGS

Only spring condition, hardly
present in winter in southern
Chile

Fiited line for Mejillones is from
Escribano et al. (1998)

Ln [DR (d™M)]

o
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DR is not differente between
—— Mejillones northern and southern Chile
@ Concepcion
0.2 - warm adapted species
(Escribano et al. 1998)
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SEASONAL AND REGIONAL EFFECTS ON DR OF EGGS

Paracalanus indicus

NORTHERN CHILE

@ Spring
O  Winter
— — 95% CL

12 14 16 18

TEMPERATURE (°C)

1)

2)

3)

3)

The response to T° depended on the
temperature range

At low T° (<15 °C) eggs develop faster
than expected (compensation?)

DR is not differente between northern
and southern Chile

Cold adapted species. It shows similar
DR’s at cold and warm conditions

Escribano et al. (submitted)



COMBINED DATA OF THE THREE SPECIES

DEVELOPMENT RATE

® Centropages brachiatus
O Calanus chilensis
A Paracalanus indicus

1. The Small P. indicus is a ver fast developing
species

2. C. brachiatus and C. chilensis are very similar

3. GT estimated assuming that egg development
GENERATION C. brachiatus is 5% of GT (Escribano et al. 1998, also

TIME — — C. chilensis

P.ndius equiproportional rule from Corkett et al. 1986)

4. Potential NGY estimated assuming continuous
reproduction and 10% of GT as a tiem lag to
initiate spawning

GENERATION TIME (d)

5. Shaded area in the current observed range of
T°in the upper 50 m

GENERATIONS

CAECY 6. Atany T°the small P. indicus will produce more
C. brachiatus generations a year

— — C.chilensis
P. indicus

7. Low temperature clearly favours the small P.
indicus
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C. brachiatus
C. chilensis

P. indicus

C. brachiatus

C. chilensis

P. indicus

Northern
Northern

Northern

Southern
Southern

Southern

IMPLICATIONS




Abundance (Ln number m"jj

FIELD OBSERVATIONS

C. brachiatus and C. chilensis at northern Chile

2 years time series (15 d sampling interval)

Both spp strongly associated with continuous

reproduction and cohort development
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FIELD OBSERVATIONS

C. brachiatus

C. brachiatus and C. chilensis at southern
Chile

2 years time series (15-30 d sampling
interval)

Both spp also associated with continuous
reproduction and cohort development

Abundance (number m3)

%
E ]
£
‘E.
5
2y
-

ndance jHo. m")

Adults 25

No time series analysis
Tracking cohorts suggested:

GT=30-35d C. brachiatus
GT=25-30d C. chilensis

NGY =10 C. brachiatus
12 C. chilensis

Hidalgo & Escribano 2007



PREDICTIONS VS OBSERVATIONS

NORTHERN CHILE

C. brachiatus 15-16°C

C. chilensis 15-16°C
P. indicus 15-16°C

SOUTHERN CHILE

C. brachiatus 12-13°C

C. chilensis 12-13°C

P. indicus 12-13°C
PREDICTIONS FROM AN TEMPERATURE _DEPENDENT ESTIMATE OF THE
NGY ARE SURPRINSINGLY CONSISTENT WITH INDEPENDT FIELD DATA

NO FIELD DATA AVAILABLE FOR P. indicus, but this is numerically
dominant and persistent year-round at both places (Escribano et al. 2007)




Are the populations controlled by temperature?

Is therefore growth temperature-dependent?

Food influences seasonal growth

Ingestion of dinoflagellates
(s copapod 1o ';l

Vargas et al. 2010

However, greater growth in the spring implies more C
from diatoms.. Copepods are overweighed. The C/N
ratio increases in the spring (>C) while in winter is
about 7

R Escribano et al | Progress in Oceanography 75 (2007 ) 4704835
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TEMPERATURE CONTROL OF COPEPOD DYNAMICS UPON GLOBAL WARMING

Concentrations of greenhouse gases from 0 to 2005 AD

Annual Mean Global Temperature Change: AT (°C)
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Highly productive upwelling : Upwelling in "hot water”

Highly stratified layer

Should we expect more copepods upon
warmer conditions?

Ulloa et al. (2001) described an increase of C.
chilensis population during the 1997-98 El
Niflo because of higher temperature




BUT, GLOBAL WARMING IS COOLING DOWN THE UPWELLING SYSTEMS

Benguela current

25 S

30 S

S

-3 -0.2 -0.1 ] 1A ] 02 0.3

Fig. 3. Annual SST trend (°C dec ') for the area under study from 1970 to 2009.

Santos et al. 2012 CSR
Humboldt current
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IN SITU DATA CLEARLY SHOW INCREASING UPWELLING

NORTHERN CHILE LAST 30 YEARS

INCREASED UPWELLING MEANS A NARROW
MIXING LAYER AND SHALLOWER OZM

CONSEQUENCES ARE UNCERTAIN

MORE UPWELLING MAY NOT BE AS GOOD
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SOME REMARKS

THE HUMBOLDT CURRENT IS JUST AN EXAMPLE ON HOW TEMPERATURE CAN
CONTROL COPEPOD DYNAMICS. FINDINGS MAY APPLY TO SIMILAR UPWELLING
SYSTEMS

HIGH-LATITUDE COPEPODS MAY NOT RESPOND TO TEMPERATURE SIMILARLY,
BECAUSE OF FOOD LIMITATION, PRESENCE OF DIAPAUSE, ALSO BECAUSE T°
REGIME IS MORE ESTABLE

TEMPERATURE-DEPENDENCE CANNOT BE SEEN OVER SHOR-TERM VARIABILITY
(INTRASEASONAL, SEASONAL, LOCAL)

PRODUCTION DURING A YEAR CYCLE DEPEND ON HOW MANY GENERATIONS THE
POPULATION CAN PRODUCE. THIS DEPEND ON THE GENERATION TIME, WHICH IS
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