

Outline of this presentation

Background / Purpose

Methods - Squid jigging simulation

Results – Movie of the simulation

Discussion - Verifying the simulation

Conclusion / Future works

Field experiment

Tank experiment

Indirect (echo-sounder)

Same

<u>To observe</u> conditions is difficult

Observation

Action

Condition

Direct

(video camera, eyesight)

Different

To set condition is difficult

means demerit

Results from these 2 types of EXP are sometimes different.

Why simulation?

Field EXP

Operating conditions fluctuate from hour to hour.

→ To clear up the reasons of catch fluctuation is difficult.

Tank EXP

Squids action is not the same

To make use of the results at R&D of fishing-lamps is difficult.

Simulation

We can set conditions freely and the results are visible.

Purpose

To construct 3D simulation model of squid schooling behavior at squid jigging operations

Overall of the Squid Jigging fisheries Simulation

Individual Squid SIM

Squid Schooling SIM

(with the Boids Algorithm)

Squid Jigging SIM

Fisheries Management SIM

- Economical ship speed
- Performance requirement of <u>LED fish-lamps</u>

Obtain parameters from Tank EXPs

Underwater Light Condition SIM (with the Snell's Law)

Squid Trade Price SIM

Process of squid jigging operation

Fishing-lamps attract squids

Make school

Make a round of the vessel

Enter the shade area

Attack jigging hooks

Be caught!

Schooling behavior

same direction

Fish makes their school with rules such as no leader, parallel-orientation, speed adjusting and holding individual distance. (Shaw 1978)

> **Boids Algorithm** Schooling Algorithm developed by Craig Reynolds

same speed

2. Cohesion

Same individual distance

Reaction toward light and hook of Japanese common squid

Toward lights

1. Be attracted by fishing-lamps, from over 1 mile (Tank and field EXPs) (Pinger data)

(Tank Exps)

Depth (m) 45 60 escape 2. Escape from high light intensity area (Field and Tank EXPs) Red: Squid 3. Locate a boundary area between shade and bright 75 (Tank Exps) 90 (Shikata 2013) 4. Move to a place they can directly see the light source

Light up

15

Toward jigging hooks

5. Chase jigging hooks (Fish finder data)

Behavior around a jigging vessel

Make a round of a vessel (sonar data)

Enter an area under a vessel from stem and stern of a vessel (sonar data)

Light intensity of stem and stern area are low (Illuminomater data)

Jigging machines placed stem and stern begin to catch (Field Exps)

Flow chart of the squid's actions in the simulation

Verifying the simulation results

1. Compare to results of simulation and 2 types of experiments

2. Compare to jigging process of simulation and field experiment Entrance

Enter under vessel area from stem and stern of a vessel or NOT

Jigging machines at stem and stern tend to begin to catch at first or NOT

12

Conclusion

The simulation results are same as the results of 2 types of experiment.

Shade areas on the stem and stern are entrances to under vessel area.

This simulation model is useful in designing fishing-lamps.

Future works •••••

Survey for obtaining other parameters

Verify the simulation results in other situations