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Introductior

Significant positive correlation
between the CPUE and Chl-a

Life history of winter-spring density in the spawning

. . grounds (Nishikawa et al.,
cohort of the neon flying squid submitted)

grounds until May and feed
on zooplankton.

Autumn-winter MLD

controlled phytoplankton
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MLD and plankton: output of ecosystem model




Purpose of this study

Clarify the underlying climate impact on

autumn-winter MLD interannual variation

Bottom-up process

Climatic change? Mixed layer depth
Nn fIi_ng squ _ Zooplankton Phytoplankton

Clarification of bottom-up process will be helpful to predict
the squid stock.

Because zooplankton variation is a direct cause for stock
variation but it is difficult to obtain.




Methods

Target area

Bulk mixed layer model

Averaged MLD in the spawning grounds
*October—February

*135-170°E and 20-27°N

Time span: 1994-2006

MLD data is derived from 4D-VAR data assimilation
system (Masuda et al, 2006).

Autumn-winter MLD in this area
depends on entrainment

We use Bulk mixed layer model
(Qiu and Kelly, 1993) to separate
contributions of Wind friction,
Shortwave radiation and Heat
flux to the entrainment.




Results

Cause of Entrainment

Anomaly of entrainment and
each components (1994-2006)

Autumn-winter
Entrainment
interannual variation
depends on Wind
friction and Heat flux

Wind friction: 28.8+6.1m. r =0.89
Heat flux; 56.0+4.7m.r=0.77



When wind friction/heat flux
deepens Mixed layer?

Correlation coefficient between

wind friction induced Time series of Oct-Nov
£ ;Z entrainment and autumn-winter wind friction and heat flux
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What controls heat flux?

a )
What controls latent
‘ variation?
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Possible control factor:
Wind speed or Humidity

Bulk formula of latent heat flux




What controls heat flux?

Estimation of Latent heat flux
according to bulk formula

Obviously, latent heat flux interannual

Heatflux(W/m?)

Heatflux(W/m2)
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Summary

Wind speed, MLD and CPUE

Su CPUE and
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Windy ——> Deep mixed layer —> High plankton density

v

C) Good feeding condition —> Good catch



Why wind speed
varies interannually?

(
We focused that high SST was
shown in El Niio year in the

south of spawning grounds.
.

\

Correlation coef. CPUE/SST two years ago

J

to be high after two years of El

Neon flying squid CPUE tends
Nifio (Chen et al., 2007).
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Why wind speed

often increasédL

Possible scenario

High SST in the south of
spawning grounds

Rising air on the south of
spawning grounds

Convergence zone on the
south of spawning
grounds intensify wind on
the spawning grounds

spawning grounds due

to convergence zone
Xpanded figure around the spawning grounds

Wind blows on the ]

Spawning grounds

High precipitation rate
confirms that rising air
formed clouds

Colored back ground: Correlation coef. between

Precipitation rate/ CPUE
Arrows: Regression coef. between Wind speed/CPUE

(Vectors are intensified in high CPUE year)



Schematic diagram of
climate-squid relation



Cause of ML deepening

% :E- me - z/tmb Xth
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E: instant entrainment rate
W and u is vertical and horizontal velocities of the mixes layer.
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Content of Heat flux



Monthly wind



