

Heat Content Variations in the Southwestern East/Japan Sea

Seung-Tae Yoon*, Kyung-Il Chang*

* School of Earth and Environmental Sciences,
Seoul National University

★ WHY HEAT CONTENT??

The ocean heat content may be the dominant component of the variability of the Earth's heat balance.

Levitus et al. (2005)

* The heat content of the world ocean increased between mid 1950s and mid-2000s.

★ THE EAST/JAPAN SEA(EJS)

- Deep marginal sea in the northwestern
 Pacific (ave./max. depth ~ 1700/3500 m)
- 3 deep basins (JB, UB, YB)
- Upper layer inflow-outflow system of the Tsushima Current, warm & thin (<200m) upper circulation south of the SPF over a thick cold water layer (over 90% in its volume, $\theta<1.0$ °C)
- Thermohaline circulation: deep water formation and southward discharge
- Rapid ventilation timescale ~ 100 years
- Other features: subduction, mesoscale eddies, high productivity (273.0 gC/m2/yr, Kwak et al., 2013)

★ WATER MASSES IN THE UB

- Tsushima Warm Water: high T, high
- S, low DO (major surface inflow)
- In summer it is capped by thin fresh layer.
- East Sea Intermediate Water: low θ (1~5°)), salinity min. layer, DO max.
 layer brought into the UB from the JB.
 Carried by the coastal boundary current or subduction along subpolar front
- Proper Water ($\theta < 1.0$ °C)

★ TEMPERATURE VARIATION IN THE EJS

Kim et al. (2001)

* Warming trend in the below 500m during the last more than 40 years.

Yeh et al. (2010)

* Warming trend of SST in the EJS is unclear(decadal variation).

Na et al. (2011)

Variability of the upper-ocean heat content in the EJS.

Lozier et al. (2008)

Basin-averaged changes can mask important spatial differences.

* Non-seasonal decadal variation

2. Data and Method

3. Results

1) Basin-averaged temperature trend profile

■ Basin-averaged temperature trend profile and the results of T-test(95%).

- * Surface~50m temperature has an warming trend but it is not significant.
- * 125~300m temperature has a significant cooling trend.

2) Basin-averaged HCA time series

129°E

130°E

131°E

132°E

* 30m

Results

129°E

130°E

131°E

132°E

129°E

130°E

131°E

4) Profiles of T_a and depth of isotherms

Results

Water mass	W1	C1	W2	C2	C 3
TWW	Strong	Weak	Strong	Strong	Strong
ESIW	Weak	Strong	Weak	Strong	Strong

5) Comparison with other studies

(1) Basin to basin comparison

Minami et al. (1999) and Cui et al. (2010)

▲ Compare the PM5's temperature(r) at 500m with the basin-averaged KODC temperature data(b) at 500m.

- * Temperature at PM5 shows a warming trend.
- * Before C2, large fluctuations show in KODC temperature time series but after C2, large fluctuations show in PM5 temperature time series.

(2) Comparison with the heat content in the EJS

Na et al. (2011), In the EJS

1st CSEOF mode of 0~300m HCA(26%), In the UB

From Aug to Jan

Sign of the UB's spatial patterns in two cases are opposite.

Opposite decadal variation shows in box period with 2-year lags (the UB leads) but after this, eastern part of the EJS and the UB shows similar variation.

(3) Comparison with the neighboring marginal sea

4. Conclusion

- * Contrary to increasing heat content in the EJS, the HCA in the upper 500m of the southwestern EJS has been decreasing.
- * Influence of two water masses is important factor for

In the future,

- > We check whether UHCA is affected by heat flux or not.
- > Compare atmospheric variables like climate indices, wind stress curl, SLP, SAT and etc with the UHCA and LHCA variations.
- > Using reanalysis data, calculating 3 dimensional heat budget.

>...

