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The Setting:
Eastern Boundary Currents (EBCs)
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Fig. 24. Schematic of an upwelling syswin.



Motivation: Benthic Larval Transport

larvae
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Larval Transport Paradigms
in Eastern Boundary Currents

Older: _ The Tattered
 The well-mixed larval pool ]
Curtain

 Upwelling relaxation => high settlement

Roughgarden 1988
Newer:
e Linear, diffusive, alongshore advective transport
e Gaussian dispersion kernel

Largier 2003
Newest:
* Eddy-driven intermittent dynamics
» Stochastic/packet model Siegel et al. 2008

e Lagrangian coherent structures map transport pathways

Harrison et al. MEPS 2013



The Tattered Curtain Hypothesis

Physical Hypothesis:
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* Curtain is the upwelling
front billowing in the
wind, interacting with
eddies

* Tattered by eddies and
filaments, esp. at
headlands

 Convergence at front

* During relaxation front
collides with coast
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Particle “Larvae” Model
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Coastal jets: A mechanism for retention
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* Material concentrated within high shear zones

* Near the core of the jet

Jet Transects

* On either side of the upwelling front

50 km
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Retention (settlement) and Wind
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Wind & Settlement
Statistics

(single run)

e Settlement shows a strong
correlation (r = 0.75) with a
20-day integrated wind
product

* Some settlement patterns
better predicted by 2-5 day
wind product

* Lack of settlement more
predicted by long bouts of
upwelling favorable winds,
“tattering” the upwelling jet



Nsettlers

Wind & Settlement Statistics (Ensemble Results)

* In the CCS-box model, extended, strong upwelling completely tatters the
upwelling jet and moves potential settlers far offshore.

* There is a positive correlation between 20-40 PLD settlement and the
integrated alongshore wind, peaking at r = 0.63 for a 20-day integrated wind (W).
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The Tattered Curtain Hypothesis Revisited

Physical Hypothesis: Harrison and Siegel, submitted to LO:FE

* Curtain is the upwelling
frent jet billowing in the
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Moving beyond the Bakun
upwelling index

* The tattered upwelling jet is an emergent feature in
upwelling systems

* There is LOCAL reduction of upwelling by coastal
velocity shear:

Bakun: fug=T,/p

sl | + jet
= 0.6/ | | ‘ Ue 6VG/6X + qu = Ty/p

0.2

; Ug = Ty/p(f + OV/0X)

= reduction of Ekman transport

Shear (0vg/dx) is high

Brink 1987, Woodson et al. 2013



Land of the upwelling jet
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FiG.2. Monthly larval recruitment rate time series from January 1997 to December 2004 for Myrilus spp. at the 26 study sites.

o . 24 25 26 Recruitment rate was measured as the number of recruits - d™'- (larval collector)™' and was transformed prior to analyses. Note the

Point Conception ¥, = marked annual cycles across the region and the abrupt decline in larval recruitment rates south of Cape Arago (site 8). Black
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Coastal Retention in Iberian EBC

~Invasiv/Normal/2006: day 38.0 _
not recruiting recruiting
\ . A . : . Crab larvae
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Domingues et al. 2012 PloS ONE



* The upwelling jet partially retains material
released over the shelf, broken up by filaments

e Strong upwelling winds tatter this jet, moving
material offshore in complex patters

* The response of the jet to wind is nonlinear,

making predictability limited in this hlgh energy
region ;

“The Tattered Curtain Hypothesis Revisited”
Harrison and Siegel, submitted to LOFE
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