

How predictable is the North Pacific?

Bill Merryfield

Canadian Centre for Climate Modelling and Analysis (CCCma),

Environment Canada

Victoria, British Columbia

PICES-2013 Nanaimo, Canada 15 Oct 2013 Thanks to: Woo-Sung Lee, Slava Kharin, George Boer...

How predictable is the North Pacific...

...in theory, as a property of the climate system:

...in practice, using prediction tools available today:

Seasonal to Decadal Prediction

IPCC AR5 WG1 report
Chapter 11: Near-term Climate Change

Focus on two time scales

1-12 months: Seasonal Prediction

ENSO + ...

1-10 years: Decadal Prediction

Pacific Decadal Variability + Forced Response (including Greenhouse Gases) + ...

Environment Canada

Canadian Seasonal to Interannual Prediction System (CanSIPS)

CanCM3 ←

CanOM4 Ocean model

- T63/L31 (≈2.8° spectral grid)

CanAM3 Atmospheric model

- Deep convection scheme of Zhang & McFarlane (1995)
- No shallow conv scheme
- Also called AGCM3

- 1.41°×0.94°×L40
- GM stirring, aniso visc
- KPP+tidal mixing
- Subsurface solar heating climatological chlorophyll

CanAM4 Atmospheric model

•CanCM4*←*

- T63/L35 (≈2.8° spectral grid)
- Deep conv as in CanCM3
- Shallow conv as per von Salzen & McFarlane (2002)
- Improved radiation, aerosols

Model SST biases vs obs (OISST 1982-2009)

Fundamentals of Climate Forecasting

- Objective is to predict <u>anomalies</u> = departures from "normal"
- Climate forecasts are inherently *probabilistic*
 - → due to "butterfly effect" need <u>ensembles</u> of predictions

time

Lead time = 9 months

Fundamentals of Climate Forecasting

- Objective is to predict <u>anomalies</u> = departures from "normal"
- Climate forecasts are inherently probabilistic

below 40% and approximately equal.

→ due to "butterfly effect" need <u>ensembles</u> of predictions

Latest ENSO forecasts from various centers

NWS/NCEP/CPC

Nino3.4 index

Other forecast members

Canada

Last update: Sun Oct 13 2013 Initial conditions: 22Sep2013-10ct2013

NINO3.4 SST anomaly plume ECMWF forecast from 1 Sep 2013

CECMWF

Mid-Sep 2013 Plume of Model ENSO Predictions

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

2013

Fundamentals of Climate Forecasting

- Objective is to predict <u>anomalies</u> = departures from "normal"
- Climate forecasts are inherently probabilistic
 - → due to "butterfly effect" need <u>ensembles</u> of predictions
- Forecasts are useful only if past performance ("skill") is known

Many skill measures are used, here will consider <u>anomaly</u> <u>correlation</u> = correlation of predicted and observed anomalies in past forecasts

Observed anomaly

CanSIPS ENSO prediction skill

SON-ASO-

JAS JJA MJJ AMJ

MAM-FMA-JFM-

lead [months]

predicted season

Nino3.4 anomaly correlation (AC) skill:

0.94 < AC < 0.98 at 0-month lead

0.55 < AC < 0.84 at 9-month lead

How predictable is the North Pacific?

Months to seasons

North American Multi-Model Ensemble

www.cpc.ncep.noaa.gov/products/NMME

Seasonality of mixed-layer depth + SSTA autocorrelation

Seasonality of ENSO teleconnections

Colors: regression of near-surface temperature on Nino3.4 index (°C) Contours: regression of sea level pressure on Nino3.4 index (Cl 0.5 hPa)

both SST persistence and ENSO influence is lower in late summer vs late winter

How predictable is the **North Pacific?**

Years to a decade

Canadian Centre for Climate Modelling and Analysis

Centre canadien de la modélisation et l'analyse climatique

What is Pacific Decadal Variability?

- Modeling studies give model-specific results (as for Atlantic)
 - → focus on empirical results
- First 2 North Pacific EOFs:

PDV as a superposition of red noise processes (Newman 2007)

What is predictable in the North Pacific on time scales of years?

Consider *lag of maximum correlation* in 1000-year climate model run to explore causal relationships

Is there empirical support for these model results?

What is predictable in the North Pacific on time scales of years?

Consider *lag of maximum correlation* in 1000-year climate model run to explore causal relationships

Index: NINO3 Field: v at 450m depth

Fu & Qiu (JGR 2002) correlated SSH obs with wind- and boundary-driven Rossby waves in model

→ both features seen, but wind-driven Rossby waves are dominant in the ocean interior

What is predictable in the North Pacific on time scales of years?

Consider *lag of maximum correlation* in 1000-year climate model run to explore causal relationships

- Equatorial Pacific heat content leads
 KOE SST by 2-3 years
- KOE heat content anomalies then advected westward by North Pacific Current
- Some possible evidence for this process (e.g. Guemas et al. JGR 2012), but many questions remain

Diagnosed potential predictability

- Boer & Lambert (GRL 2008) diagnosed fraction of N-year averaged surface temperature that is potentially predictable in 8000 years of climate simulations
- Perhaps surprisingly, North Pacific nearly as predictable as North Atlantic
- However, actual decadal prediction skills look like this:

potentially predicable variance (% of total variance)

 Anomaly correlation, Years 2-5 of forecasts from 5 IPCC decadal prediction models initialized in 1961-2006 (Guemas et al. JGR 2012, also Kim et al. GRL 2012, Doblas-Reyes et al. Nature Comm. 2013)

Why are actual and potential predictability so different?

Some possibilities:

- Climate models used to compute potential predictability are wrong?
- Warming trend (absent in potential predictability analysis) matters →
 yes, but increases predictability especially in tropics (Boer, Clim Dyn 2011)
- Empirical analysis (Newman 2007) is a better indication of predictability
 - → maybe: first (trend) mode somewhat resembles skill
 - → explore role of second mode by removing trend?

Why are actual and potential predictability so different?

Some possibilities (continued):

 Guemas et al. (JGR 2012) suggest much of skill deficit caused by predictions missing large westward migrating warm anomalies in 1960s:

Apr 1963

Nov 1960

Prediction of PDO and NPGO indices

- Lienert & Doblas-Reyes (JGR 2013) evaluated decadal predictions of PDO and NPGO indices
- PDO/NPGO defined as 1st and 2nd EOFS of detrended N Pacific SST

Conclusions

- Climate models are now being applied to near-term prediction, as well as long-term projection
- Seasonal prediction is relatively mature (can forecast ENSO and its impacts several seasons in advance), much to be done in developing ocean applications (currents, coastal upwelling,...)
- Decadal prediction is still in its infancy, ultimate potential still not well known
- Decadal predictions perform relatively poorly in the North Pacific, reasons being explored
- This does not stop scientists from making these predictions

Real time multi-model decadal prediction (Smith et al. Clim Dyn 2012) issued early 2013

