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Changes in Fish Assemblage at Fixed 
Locations 
Simpson et al., 
Continental shelf-wide 
response of a fish 
assemblage to rapid 
warming of the sea, 
Current Biology (2011), 
doi:10.1016/j.cub.2011.08
.016 

increase (r) 

Assessed “trends in 172 
cells from records of >100 
million individuals sampled 
over 1.2 million km2 from 
1980–2008. We 
demonstrate responses to 
warming in 72% of common 
species.” 

Smaller, faster growing 
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Are Our Standard Compartment Ecosystem 
Models Adequate? 

• Current planktonic food web models have a 'fixed' 
structure, and few parameter values vary over time 
in response to a changing environment 
(exception – “optimality” or “adaptive” models of 
Markus Pahlow, S. Lan Smith, A. Merico,…) 

• Try a model where adaptation is formulated in 
terms of the distribution of species or phenotypes 
as a function of traits (e.g., intrinsic growth rate) 
which in turn are functions of environmental 
variables: Temp, pH, O2, pCO2, etc. 

e.g. maybe a simple ‘Complex Adaptive System’ model 
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Ecological Adaptation to a Changing Climate 

Key reference: Norberg et al. 2001. Phenotypic diversity & 
ecosystem functioning in changing environments: A theoretical 
framework, US Proc. Natl. Acad. Sci. 98 (20), 11376-11381. 

Relative Growth Rate = (environmental variables: T, pH, O2, etc) 

0                
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of species or phenotype i as a function of environmental 
variable xi for a step change in environmental ‘fitness’, i.e. 
a regime shift in the environment 
 
  

 
 
 
 
 
 
 
 
 
     
     
   So far, ignores diffusion, immigration, emigration, 
       plasticity, genetic adaptation (evolution), etc. 
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Change in Biomass P(xi ,t) 
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Response to a Shift in T 
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Told(Hmax)  = 12.5°C 
     
Tnew(Hmax) = 20°C 
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Species/Phenotype Abundance, 

 0                 5               10              15              20              25 
                                          Temp (°C) 

Pi (T, t=0) 

Hnew (T) 

Success & rate of adaptation depend on the degree of 
overlap of the initial distribution P(xi ,0) of species or 

phenotypes and the new fitness function H(xi ,t) 



Response to Decreasing pH (1) 
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Fitness function  
H(t=0) 

Smoothly decreasing pH 

Pi (pH, t=0) 



Time-Varying Environmental Forcing 

1. At each time t, vary forcing  
by adding random forcing Rt  
to the slowly-increasing Tt  
(or decreasing pHt)  

    

But this is “too random” 

2. So create first order autoregressive variable “AR1”: 
   Zt = a1 Zt-1  + a2 Rt , where ‘a2’ can be calculated from 
‘a1’ such that the new distribution Zt has the same 
variance about its centre as the original distribution Rt 
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Response to Decreasing pH (2) 
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Decreasing pH with  
short term variability 



Effect of Variable Forcing in pH 
(1 generation = 5 timesteps) 
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Smoothly decreasing pH Decreasing pH with  
short term variability 

Demonstrates how an extreme in variability 
imposed on a smooth decrease in pH over 

several generations could cause local extinction 



Consider a1 = 0.8 and 0.95 
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a1 = 0.8  a1 = 0.95  

Larger AR1 coefficient a1 has a longer ‘memory’ 



Uniform Warming  
+ Variable Forcing 

PICES W2 Oct 2013 12 

──   ‘Slow’ trend in T 

- - - Plus random  
         forcing Zt 

── Peak biomass 

..... 95% cpdf 

---  75% cpdf 

---  25% cpdf 

.....  5% cpdf 
 

  a1 = 0.8 

  



AR1 Forcing Starting at  
t = 0, 500, 1000, 1500, 2000 
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Effect of ‘Slower’ Variability  
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a1 = 0.80 

a1 = 0.95 
 



Constant Max Growth Rate 
vs Q10 = 2 Increase with T 
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max(T) 



Effect of Q10 Dependence on 
Total and Peak Biomass 
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Adding Realism? i.e. Complexity 

So far we have started to explore only the effect of 
change in 1 environmental variable (T or pH) on 1 
physiological trait (maximum intrinsic growth rate), of 1 
group. 

What is next? 

1. Add size dependence of phytoplankton as a function of T 

2. Develop zooplankton whose size is a function of the size of 
their prey, via an allometric relationship 

3. Start to build a foodweb with these adaptive groups 

4. Add multiple stressors, e.g. changing T, pH, O2, etc., 
possibly using Hans Pörtner’s ‘Optimum Thermal Window’ 
concept. 
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Thanks  
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denmank@uvic.ca 


