PICES-2014 Annual Meeting 2014/10/21

Development of a Seto-Inland-Sea model toward operational monitoring and forecasting

<u>Kei Sakamoto</u>, Goro Yamanaka, Hiroyuki Tsujino, Hideyuki Nakano, Norihisa Usui and Shogo Urakawa Meteorological Research Institute, Japan

1. Introduction

Japan Meteorological Agency, JMA, is monitoring and forecasting the Western North Pacific ocean operationally using a data assimilation system, "MOVE-WNP".

SST anomaly forecast at Oct. 30, 2014

http://www.data.jma.go.jp/gmd/kaiyou/data/db/kaikyo/ocean/forecast/month.html

New system

the operational ocean models of JMA

3

methods

Seto-Inland-Sea model

Model Seto

Schemes for coastal modeling

general-purpose model

downscale MOVE-WNP with a horizontal resolution of 2km

to represent coastal topographies and physical processes

Schemes suited for small-scale phenomena

- high-precision advection scheme etc.
 Specifications particular to coastal seas
- river run-off
- tidal mixing

A platform of research and services of coastal seas

to meet various requests

The purpose of my presentation is to give an overview of Model Seto.

- 2: Model configurations
- 3: Results
- 4: Particular specifications
- 5: Brief introduction of the next version, "Model Japan"

2. Configurations of Model Seto

Model region

Model configurations

Model Seto

Numerical model	our own OGCM: MRI.COM Ver.3.2	
coordinates	free-surface sigma-z, polar coordinates	
horiz. resolution	about 2 km (1/33 degree *1/50 degree)	
vertical resolution	4-600m (50 layers)	suited for small-scale
tracer advection	Second-order Moment closure (Prather 1986)	
horiz. mixing	Smagrosinky bi-harmonic scheme	
vertical mixing	Noh and Kim (1999)	
tides	tidal mixing parameterization (Lee et al. 2006)	
lateral boundaries	re-analysis dataset of MOVE-WNP 4DVAR	
downscaling	off-line one-way nesting	3 hourly, dx=5km
atmospheric forcing	JMA operational datasets (GSM+MSM)	
river run-off	daily observation of 28 major rivers	
time step interval	2.5 minutes	
others	restore sea surface salinity to climatology with 29.2 day	

Test experiment

Q

A test experiment to investigate model performance

Q T

The parent model for comparison

MOVE-WNP 4DVAR re-analysis

Observation datasets

- Satellite sea surface temperature (SST) (MODIS: JAXA/Tokai Univ.)
- SST time series at a coastal site (JODC)
- sea surface height (SSH) by tide gauge (JMA)

3. Results

SST in Model Seto

Seasonal evolution of SST

Monthly SST (2010) Seto free run realistic seasonal evolution of the ocean states, owing to our model tuning and good performance of MOVE-WNP (used for lateral boundaries)

SST Snapshot

SST snapshot on Mar 1, 2011.

various scales of structures (10–100 km)

no small-scale structures

SST variation at Uwajima

Kuroshio-water intrusion

SSH variation at Uwajima

SSH anomaly (departure from averages)

4. Particular specifications

Tidal mixing parameterization

Model Seto implements a tidal mixing parameterization to compensate for lack of tides.

Impact of tidal mixing

Usage of river runoff obs.

- River runoff affects the ocean state in the Seto Inland Sea.
 (Kobashi and Fujiwara 2003 in Japanese)
 - suggesting that it is important to use an accurate dataset of river runoff.

Seto free run

data: daily observation of 28 major rivers (1994-2003 mean)

34.5N -34N -33.5N -32.5N -1 x 10⁻³ [cm / s] :

133E

The values are converted to rainfall in the model grid.

1.34F

135F

136E

A case using a low-resolution data data: 1-degree monthly runoff in the CORE dataset

131E

132E

32N

Impact of river runoff

Sea surface salinity in Sep 2011 Seto free run

5. Model Japan (next ver.)

Overview of Model Japan

- expands Model Seto to the whole coastal regions of Japan
 - Same numerical model (MRI.COM)
 - Same horizontal resolution (about 2km)
- uses up-to-date schemes
 - new turbulence closure (GLS)
 - implementation of explicit tidal forcing (Sakamoto et al. 2013, OS)
 - on-line two-way nesting of 3 models
 - Global WNP Model Japan

Model Japan

Results: tides

- Model Japan can reproduce tides and other ocean processes simultaneously.
 - ▶ Tides are dominant in SSH variation at the coasts of Japan.

Results: SST

1-year free running simulation SST (25-hour mean)

IΟ

TΖ

oceanography research / public services in future.

6. Conclusion

Conclusion

- We have developed an operational coastal model of the Seto Inland Sea, Japan, "Model Seto".
 - features:
 - fine horizontal resolution (about 2 km)
 - schemes for small-scale phenomena
 - specifications particular to coastal seas (e.g. tidal mixing, river runoff)
 - performance:
 - realistic seasonal evolution of the ocean state
 - coastal processes with a scale of 10 km
 - short-term variation (a few to ten days)
- Japan Meteorological Agency will start operating the monitoring and forecasting system using Model Seto in 2015.
 - The data assimilation method will be also updated to 4DVAR.
- We are developing the next version, "Model Japan".
 - to be a platform of research, disaster prevention, fisheries, etc.
 - regional impacts of climate change