A biological contribution to partial pressure of CO₂ in the western Arctic Ocean and Bering Sea

*Futsuki, R.¹, T. Hirawake², A. Fujiwara^{2,3}, T. Kikuchi⁴, S. Nishino⁴, D. Sasano^{5,6}, M. Ishii^{5,6}, H. Uchida⁴ and S. Saitoh²
*E-mail: futsuki@salmon.fish.hokudai.ac.jp

¹Graduate School of Fisheries Sciences, Hokkaido University,

²Faculty of Fisheries Sciences, Hokkaido University,

³Arctic Environment Research Center, National Institute of Polar Research,

⁴Research and Development Center for Global Change, JAMSTEC,

⁵Global Environment and Marine Department, Japan Meteorological Agency,

⁶Oceanography and Geochemistry Research Department, Meteorological Research Institute

S9: Variability in advection and its biological consequences for Subarctic and Arctic ecosystems

PICES Annual Meeting 2014 Oct. 16-26, Yeosu, Korea

Introduction

Air-sea CO₂ flux

The ocean plays a crucial role in mitigating effects of perturbation to the climate system, sequestering 20 to 35 % of anthropogenic CO₂ emissions (Khatiwala et al., 2009)

Total sink of atmospheric CO_2 : 65-175 TgCyr⁻³⁰⁰ 1775 1800 1825 18

Contributing 5-14% to the global ocean's net uptake of CO₂ (Takahashi et al., 2002, 2009; Bates and Mathis, 2009)

Especially...

Chukchi Sea is a large ocean sink for CO₂ briefly in summer, sea ice-free period and contributes nearly 1/3 to 1/2 of the

CO₂ sink in the Arctic (Bates et al., 2011a)

<Bering Sea>

Bering sea shelf shift from neutral CO₂ sink/source status in spring to strong oceanic sink for CO₂ by summer (Bates et al., 2011a)

Partial pressure of CO₂ (pCO₂) vary with

- 1) Solubility change (temperature, salinity) → solubility pump
- 2) Vertical mixing (wind-induced, sea ice formation) → physical pump
- 3) Gas exchange at sea surface
- 4) Advection of other water masses and fresh water inflow
- 5) Phytoplankton uptake → biological pump
 Seasonally significant

Recent Arctic environment

- Increase in flesh and heat water flux depends on increasing
 Bering Strait throughflow (Woodgate et al., 2012)
- Reduction of sea ice area in summer and earlier retreat of sea ice
- Shift in timing of phytoplankton bloom and change in annual primary production (e.g. Brown and Arrigo, 2012; Ji et al., 2013, etc...)

Rapid environmental change in the Arctic Ocean

The Arctic marine carbon cycle will likely enter a high dynamic state in coming decades, with large uncertainties in the exchange of atmosphere-ocean CO₂ (Bates et al., 2011b)

Ex) Murata and Takizawa, 2003; Hauri et al., 2013, etc...

However

Few studies have focused on relationship between pCO₂ and biological processes

⇒ Thus, little is known about how much biological processes affect pCO₂

It's important to clarify the biological contribution to pCO_2 for more understanding of air-sea CO_2 flux in the western Arctic and Bering Sea where environmental change is rapid

5

 To clarify biological contribution to pCO₂ in the western Arctic and Bering Sea

In-situ and satellite data

Cruise data

R/V "Mirai" Arctic Cruise, 2012 (MR12-E03) 3rd Sep. – 17th Oct., 2012

In-situ and satellite data

- Partial pressure of CO₂ (pCO₂)
- Sea Surface Temperature (SST)
- Sea Surface Salinity (SSS)
- Chlorophyll a concentration (Chl.a)
- Mean wind speed
- Open water period

Mean primary productivity Biological —

Total Alkalinity(TA), Salinity(Sal), Dissolved Inorganic Carbon(DIC)
 → CTD bottle sampling data

Physical

Data sampling and processing

pCO₂[μatm], SSS[psu], SST[°C] and Chl.a[mg m⁻³]

1st step: Seawater was pumped up from 4.5m below the sea surface.

pCO₂: Cavity Ring-Down Spectroscopy (CRDS), and **SSS; SST; Chl.a**: Continuous sea surface water monitoring system

Open water period (OP) [days]

Satellite derived sea ice concentration (SIC), SSMI/DMSP, 25km, Daily

The period from onset of ice retreat to observed day

→ The day that SIC is first below 10%

Primary Productivity [mg C m⁻² d⁻¹]

Satellite derived $a_{\rm ph}(443)$, E_0 , $Z_{\rm eu}$, MODIS/Aqua, 9km, Daily

Calculated by the algorithm using phytoplankton light absorption coefficient ($a_{\rm ph}(\lambda)$) (Hirawake et al., 2011) and optimized by a parameter in Arctic region

Wind speed [m s⁻¹]

NCEP/North American Regional Reanalysis (NARR), Wind speed at 10m above sea level, 32km 3 hours

Cluster analysis

pCO₂ & environmental parameters

SST SSS Chl.a

Open water period (OP)

Mean wind speed during OP

Mean primary productivity during OP $\Delta p \text{CO}_2(p \text{CO}_{2\text{sea}} - p \text{CO}_{2\text{air}})$

Classified into 6 regions

- Bering sea basin
- Northern Bering & central Chukchi Sea
- Northern shelf of Chukchi Sea

- Southern Chukchi Sea
- Southern Bering Strait
- 6 Northern Chukchi Sea (basin & slope)

9

Water mass analysis

$$f_{\text{Bering}} + f_{\text{River}} + f_{\text{Ice}} = 1$$

$$f_{\text{Bering}} \underline{S}_{\underline{\text{Bering}}} + f_{\underline{\text{River}}} \underline{S}_{\underline{\text{River}}} + f_{\underline{\text{Ice}}} \underline{S}_{\underline{\text{Ice}}} = S$$

 $f_{\text{Bering}} \underline{\text{TA}}_{\text{Bering}} + f_{\text{River}} \underline{\text{TA}}_{\text{River}} + f_{\text{Ice}} \underline{\text{TA}}_{\text{Ice}} = \underline{\text{TA}}$ (Yamamoto-Kawai et al., 2005),

S, 74 are measured value

End-member	End-member value		
(Cai et al., 2010)	Sal. [psu]	TA [µmol kg ⁻¹]	DIC [µmol kg/1]
Bering Sea water	33.218	2257.9	2161
River water	0	1100	1150
Sea ice melt water	5	450	400

evaluated 3-component fraction of end-members $(f_{Bering}, f_{River}, f_{Ice})$

This analysis is not available in south of Bering
 Strait due to no CTD sampling data

Spatial distribution of Δp CO₂

- Most regions had CO₂ sink condition except southern Bering strait
- Spatial variability of $\Delta p CO_2$ was significant (-200 < $\Delta p CO_2$ < 160)

Biological contribution

- Northern & central shelf of Chukchi Sea (Cluster 2, 3)
 - \Rightarrow Large biological contribution: 47%(2.6), 39%(8)
- Southern Chukchi Sea (Cluster 4)
 - ⇒ Not so large biological contribution: 20%(24)
- Southern Bering Strait and northern Chukchi Sea (Cluster 5, 6)
 - \Rightarrow No biological contribution: 1%(39), 0%(12)

The feature of Δp CO₂ in the Arctic

Significant low Δp CO₂ region

- Northern Bering & central Chukchi Sea
 - $\Rightarrow \Delta p$ CO₂: -131(39) µatm, 47%
 - Relatively high mean primary productivity (702 mg C m⁻² d⁻¹)
 - Relatively weak wind (5.55 m s⁻¹)
 - \pm Less stratification (f_{sim} =1%)
 - Orthern shelf of Chukchi Sea
 - $\Rightarrow \Delta p$ CO₂: -109(39) μ atm, 39%
 - Relatively high Chl.a (0.9 mg m⁻³)
 - Relatively weak wind (5.04 m s⁻¹)
 - \pm Less stratification(f_{sim} = 8%)

In-situ biological pump and/or advection of low pCO₂ water after blooming allowed significant CO₂ sink condition in these regions

<u> </u>			<u> </u>
Cluster	Chl.a	mean_PP	mean_wind
Ciusici	Median(IQR)	Median(IQR)	Median(IQR)
Cluster1	0.60(0.44)	605(94)	7.33(0.21)
Cluster2	0.53(0.50)	702(155)	5.55(0.60)
Cluster3	0.90(0.50)	450(124)	5.04(0.55)
Cluster4	1.40(0.95)	807(67)	6.46(0.29)
Cluster5	0.55(0.43)	624(139)	5.59(0.45)
Cluster6	0.09(0.04)	382(170)	5.52(0.34)

The feature of Δp CO₂ in the Arctic

Cluster

Cluster4

Cluster5

Cluster6

1.40(0.95)

0.55(0.43)

0.09(0.04)

Neutral \(\Delta p \text{CO}_2 \) region

- Southern Chukchi Sea
 - $\Rightarrow \Delta p$ CO₂: -57(33) μ atm, 20%
 - High primary productivity (807 mg C m⁻² d⁻¹)
 - High chl.a (1.40 mg m⁻³)
 - Significant stratification by sea ice melt water $(f_{SIM} = 10\%)$
 - Relatively strong wind (6.46 m s⁻¹)
- 6 Northern Chukchi Sea
 - $\Rightarrow \Delta \rho CO_2$: -23(13) µatm, -1%
 - Low primary productivity (382 mg C m⁻² d⁻¹)
 - Low Chl.a (0.09 mg m⁻³)
 - Significant stratification by sea ice melt water $(f_{SIM} = 16\%)$

Shallow mixed layer depth and strong stratification by sea ice melted-water allowed relatively quick re-equilibration with atmosphere (Cai et al., 2010)

807(67)

624(139)

382(170)

6.46(0.29)

5.59(0.45)

5.52(0.34)

 The northern Bering, central & northern shelf of Chukchi Sea (Cluster2, 3) had significant CO₂ sink condition and <u>biological CO₂ uptake largely</u> <u>contributed to pCO₂.</u>

 The southern & northern Chukchi Sea (Cluster4, 6) where strongly stratified by sea ice melt water had relatively neutral CO₂ sink/source condition, and <u>biological</u> contribution to <u>pCO₂ was not so large or nothing</u>

If further sea ice reduction and earlier ice retreat will occur_{(e.g.} IPCC AR5; Brown and Arrigo, 2012), and annual net primary productivity will increase (e.g. Arrigo et al, 2008; Pabi et al, 2008);

two possible scenarios are expected

- □CO₂ sink will be enhanced in the region where primary productivity increase
- □ strong and broad stratification may occur by further sea ice reduction and earlier ice retreat, and allow relatively quick reequilibration with atmosphere and prevent CO₂ uptake from atmosphere to the ocean.

