Prospect for the biological control of Heterocapsa circularisquama bloom by inoculating frozen bottom sediment with HcRNAV viruses

Natsuko Nakayama¹, Shinichi Kondo³, Naotsugu Hata², Yuji Tomaru¹, Masami Hamaguchi¹, Keizo Nagasaki¹ and Shigeru Itakura¹

¹Fisheries Research Agency, ²Mie pref. Fisheries Research Institute, ³Niigata pref. Fisheries Research Institute

Biological control of HABs

Study on application of virus infectious to H. circularisquama

To propose an idea for mitigation of HABs by using natural viruses in the bottom sediments

ref. Phage therapy

• Phage therapy or viral phage therapy is the therapeutic use of bacteriophages to treat pathogenic bacterial infections (Wikipedia).

The direct human use of phages: In August 2006, the United States Food and Drug Administration (FDA) approved spraying meat with phages (Wikipedia).

Presentation Outline

[Background and objective]

- Heterocapsa circularisquama as HABs in Japan
- Viruses infectious to H. circularisquama
- Recent occurrence of the H.circularisquama and its virus
- Variability of infectious type of *H.circularisquama* and its virus
- Availability of sediment including viruses

[Biological control Experiment]

Study on the application of virus to diminish
 H. circularisquama bloom

Presentation Outline

[Background and objective]

- Heterocapsa circularisquama as HABs in Japan
- Viruses infectious to H. circularisquama
- Recent occurrence of the H.circularisquama and its virus
- Variability of infectious type of *H.circularisquama* and its virus
- Availability of sediment including viruses

[Biological control Experiment]

- Study on the application of virus to diminish H. circularisquama bloom

Heterocapsa circularisquama (Dinophyceae)

Specifically harmful to shellfish

Oysters killed by Hc-bloom

pearl oyster

Damage to Japanese fisheries 45° JP-01 Year Dama Causative species Area 40° JP-07---1972 Harima-Nada Chattonella Π̈P-02 1977 Harima-Nada Chattonella 35 1978 Harima-Nada Chattonella Hokkaido Tohoku-Pacific JP-05 Yell₃₀. 1984 Kumano-Nada Karenia Tonankai 30° Tohoku-Japan Sea Sanin-Hokuriku 1991 Red se Aki-Nada etc. Karenia Setonaikai West-Kyusyu Heterocapsa 25° 1992 Ago Bay P6²⁵ 125° 130° 135° 150° 140° 145° Yello .. IDV Kagoshima Bay Heterosigma 1995 390 billion US\$ 1998 Hiroshima Bay Heterocapsa Yellowtail etc. Yatsushiro Bay Cochlodinium 2000 4 billion JPY 2000-2001 Ariake Bay Diatoms Porphyra >1 billion JPY 2009-2010 Yatsusiro Bay Chattonella Yellowtail etc. 8.7 billion JPY Bungo-Suido 1.3 billion JPY 2012 Karenia Yellowtail etc.

125°

130°

135°

140°

145°

150°

Lytic infection to dinoflagellate

Two virus species infecting Heterocapsa circularisquama

Occurrence in recent years of the *H. circularisquama* and its virus

- ► H. circularisquama and its virus (HcRNAV) showed a simillar pattern of fluctuation in natural environments.
- There are large amount of HcRNAV in sediment.

Presentation Outline

[Background and objective]

- Heterocapsa circularisquama as HABs in Japan
- · Viruses infectious to H. circularisquama
- Recent occurrence of the *H.circularisquama* and its virus
- Variability of infectious type of *H.circularisquama* and its virus
- Availability of sediment including viruses

[Biological control Experiment]

- Study on the application of virus to diminish H. circularisquama bloom

Biological Control: Advantages of using virus

~Artificially promoting events that naturally occur in nature~ Environmental friendly

Virus controls the population dynamics of

♦ Highly host-specificity
→ Killing only the target

- Virus increases as it destroys the host cells.
 - →Effect on the wide range in a small amount of virus

But, it is difficult to spray directly viruses.

(I.) The word 'Virus' makes negative impression.

Variability of infectious type of HcRNAV

At least three groups of infectious type of HcRNAV

(Tomaru et. al 2004, Nakayama et al. 2013)

II.-2 In natural sea water and sediment ---

1 before bloom

2 bloom: Increasing variability of *H.circurarisquama*

3 increase of variable viruses attacking the host

4 accumulation of valiable viruses in sediment

5 sampling of the sediment, cryopreservation

Advantages of using frozen sediment

- Large amount of HcRNAVs in sediment
- Frozen sediment keeps <u>high-titer</u> of HcRNAV
- Harmful cysts die by sediment freezing
- <u>A variety of virus</u> (differing in host range) is included.

spraying the virus-containing sediment means:

Making the environment more disadvantageous to *H. circularisquama*

Presentation Outline

[Background and objective]

- · Heterocapsa circularisquama as HABs in Japan
- · Viruses infectious to H. circularisquama
- Recent occurrence of the H.circularisquama and its virus
- Variability of infectious type of *H.circularisquama* and its virus
- Availability of sediment including viruses

[Biological control Experiment]

- Study on the application of virus to diminish H. circularisquama bloom

Field Experiment (Lake Kamo)

Blackish lake: Hc bloom occurred in the summer of 2009-2014.

- Enclosed environment
- No cultured fish
- Bottle experiment is performed to verify its effect to natural *Hc* population.

Bottle experiment in 2011

Objective :

verification of effect sediment on natural HC population

No sediment

Autoclaved sediment

+ Sediment

Result I

* H.circularisquama showed a remarkable decrease in cell density (from ca. 7,500 to ca.75 cells/mL)

Result II

 HcRNAV significantly increased within the 6 days. (from 40 to 72,000 infectious units/mL)

Future Subject

- 1. Effect of the virus in the sediment
- 2. How much volume does it need?
- 3. Safety

Taking sediment samples

Field test

[Simulated experiment by large-scaled test]

[Lake Kamo is only field that verification test was allowed by public administration.]

Summery

- ☆ H. circularisquama and its virus (HcRNAV)

 showed a simillar pattern of fluctuation in

 natural environments.
- ★ There are large amount of HcRNAV in sediment.
- ★ Inoculating frozen sediment is available to decrease H.circularisquama in cell density .

We will develop the application of preventing HABs.

Thank you all for your attention