Decadal scale changes in the feeding habits of sei whales in the western North Pacific off Japan

Kenji <u>Konishi</u>, Tatsuya Isoda and Tsutomu Tamura Institute of Cetacean Research, Tokyo, Japan

Biology of sei whale

Balaenoptera borealis length13-14m weithg >30t

Characteristic baleen plates adapted for feeding copepods

Migrates to subarctic area in spring for food from low latitude.

Large biomass in the study area

Baleen of sei whale

Second phase of Japanese Whale Research Program under Special Permit (JARPN II)

- Since 2000 and the completion in 2016
- Purpose of JARPN II
 - 1) Feeding ecology and ecosystem studies. (including consumption estimates)
 - 2) Monitoring environmental pollutants in cetaceans and the marine ecosystem.
 - 3) Stock structure of whales.
- Target species
 - Target species: **sei**, Bryde's, common minke and sperm whales.
 - Sei whale has been sampled since 2002.
- Combination with Sampling, dedicated sighing, trawling and echo sounder surveys

Survey area and method in JARPN II

Abundance of sei whales 5300-7600 ind. in summer season (Hakamada 2009)

Period 2002-2015 May-Oct.

Sighting and sampling vessel

Research base vessel Nisshin Maru

Purpose of this study

JARPA II program has shown that....

Pelagic fish such as anchovy carried by Kuroshio-Current are important in the study area.

Anchovy which are commonly found in the stomach from surveys in early 2000s has declined in occurrence in recent surveys.

Early 2000s JARPNII

- 1. General feeding habits of sei whales in the study area.
- 2. Decadal change in feeding habits of sei whales during 2002-2015.

Study area and oceanographic structure

Example from 2014 JARPAN II cruise

Sampling positions of sei whales in 2014

Subarctic Front

Transition Domain

Subarctic boundary

Subarctic Interfrontal Zone

Kuroshio extension

Illustration

Subarctic boundary: 4C isotherm at 100m depth (Argo data from JAMSTEC) Subarctic boundary: salinity of 34 psu at near surface (Argo data from JAMSTEC) Kuroshio extension: Sea surface height AVISO absolute dynamic topography

Sampling of stomach contents on board

- Weighing, sampling, identification and measurements of prey species
- Sub samples were stored for later examination

Results

Sei whale sample size Male n=580Female n=684

Major prey species (fish)

Japanese anchovy (Engraulis japonicas)

Mackerels (Scomber japonicus, S. australasicus)

Japanese sardine (Sardinops melanostictus)

Major prey species (zooplankton)

Copepods

- Neocalanus cristatus
- N. plumchrus

Euphausiids

- Euphausia pacifica
- E. similis
- Thysanoessa gregaria

Minor prey species of sei whale in the western North Pacific

Minimal armhook squid (Berryteuthis anonychus)

Distribution of provises (fish) from

chovy

ackerels

ean forestomach content eight per 0.5 degree mesh

Distribution of prey species (sardine) from stomach contents (2014-2015)

Sardine

Distribution of prey species (zooplankton) from opepods uphausiids

Weight of contents and Daily Feeding Patterns

Water temperature among prey species

Prey species and school size

Trend of prey species composition (2002-2015)

Summary of the results

- Feeding habits of sei whale in the western North Pacific
 - Pelagic fish are suitable prey which can fill the stomach at one time and available through daytime. But the availability differs among years.
 - Copepods are available in broad area every year. But time of feeding is limited to evening to early morning.
 - Euphausiids are mainly fed at longitude between 150°E-160°E.
 - Sea surface temperature where sei whale distribute depend on the prey species.
 - Sei whale changes its school size in relation to the prey species.
- Trend of prey species composition
 - Main fish prey of sei whale in the western North Pacific completely changed from anchovy in early 2000s to mackerels and sardine.

Comparison to Japan's fisheries catch

Catches of pacific stocks of pelagic fishes

Data from Fisheries Agency of Japan and Fisheries Research Agency

Conclusion

- This study illustrated that......
 - Sei whale flexibly change its prey in relation to the food availability) (opportunistic feeding)
 - In the study area, the pelagic fishes carried by Kuroshio-Current are important prey species (only large amount of prey)
 - Sei whale changes its behavior (where it occurs and school size) in relation to prey species and SST

- Prey composition trend reflects the trend of prey availability for of sei whale during 2002-2015 in the study area
- The distribution of pelagic fish carried by Kuroshio-extension is key to determine the prey composition of sei whale.

