Using climate model output to project climate change impacts over the 21st Century in the North Pacific Subtropical Ecosystem

Jeffrey Polovina and Phoebe Woodworth-Jefcoats
Pacific Islands Fisheries Science Center
NOAA Fisheries
Honolulu, HI. USA
S-CCME

Central North Pacific Subtropical Ecosystem Food Web

FISHING IMPACTS: Over past 2 decades fishing has reduced apex species (tunas, billfishes, sharks) resulting in a increase in smaller species (mahi, pomfret, lancetfish, snake mackerel). (Polovina and Woodworth-Jefcoats 2013 *Plos* One)

How will future climate change impact this ecosystem?

NOAA GFDL Earth System Model 2.1 (ESM2.1 A2 NPZ)

CM 2.1 (Atmos., Land, Ice)

Coupled Climate 1

Biogeochemical

Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ)*

Major nutrients + 4 phytoplankton groups

1° x 1° north of 30°N, with latitudinal resolution increasing to 0.33° at equator Ocean has 50 levels, with 22 10m spacing levels in the upper 220m We used monthly values from 1991 - 2100

*Dunne et al. (2005, 2007)

Change Over the 21st Century projected from GFDL model

ΔΡΡ

ΔSm

ΔLg

Species-based (Ecopath with EcoSim Model)

Use 2 different ecosystem models to project bottom-up impacts from phytoplankton changes to the entire subtropical ecosysem

Size-based Food Web Model

Currently only using 1-D ecosystem models so no need to downscale ESM output

GFDL ESM projected phytoplankton and SST time series for central North <u>Pacific</u>

Total longline catch time series from each model as a function of F

Ecopath with Ecosim Size-Based Food Web

Yield curve large fish (>25 kg)(2080-2100) for each model with and without climate change

Solid lines: climate change scenario

Dashed lines: no climate change change

Climate impacts on large (>25 kg) and small (<25 kg) fish catch

Ecopath with Ecosim Model

Size-Based Food Web Model

Small Fish Catch — Total Fish Ca

Woodworth-Jefcoats et al. 2015 Prog. Oceanogr

Size-based food web model for large fish catch and % large fish in catch with and without climate change (2081-2100)

Percent decline in zooplankton minus percent decline of phytoplankton over the Century

GFDL-ESM2G Increasing thermal habitat Shaded pixels are those that have at least one monthly epipelagic temperature between 24.5-32 °C during 1986-2005.

GFDL-ESM2G Increasing thermal habitat

Shaded pixels are those that have at least one monthly epipelagic temperature between 24.5 - 32 °C during 2081 - 2100. Shading indicates 2081 - 2100 mean epipelagic temp.

GFDL-ESM2G Decreasing thermal habitat

Shaded pixels are those that have at least one monthly epipelagic temperature between 13 - 18.5 °C during 1986 - 2005. Shading indicates 1986 - 2005 mean epipelagic temp.

GFDL-ESM2G Decreasing thermal habitat

Shaded pixels are those that have at least one monthly epipelagic temperature between 13 - 18.5 °C during 2081 - 2100. Shading indicates 2081 - 2100 mean epipelagic temp.

Total annual area of declining moderate subtropical temp habitat

Total annual area of increasing warmest subtropical temp habitat

Total Annual Area of new habitat

Shift in temperature (SST) frequency distribution between beginning and end of the Century

Summary – Fishery impacts

- Ecosystem models driven with plankton output from Earth System Models provide a means of estimating fisheries impacts and identifying climate-informed ecosystem reference points. Value in using several different types of ecosystem models.
- One Earth System Model phytoplankton output used in 2 ecosystem models projects fishery catch of apex species will be reduced by 15-50%. Further a 50% reduction in F may be required to maintain ecosystem size structure.
- Going forward need to incorporate zooplankton and temperature changes in ecosystem models.

Summary- Epipelagic thermal habitat

- Thermal gradients in the subtropical gyre run east to west as well as south to north. As the ocean warms the temperature frequency distribution changes.
- There is a replacement of 10 million km² of the mid-range subtropical thermal habitat with the upper range thermal habitat altering areas of preferred habitats for various subtropical species.
- 1-10 million km2 of new thermal habitat with temperature exceeding anything previously seen emerges
- Assessing the complete suite of climate impacts to an ecosystem will likely require several different modelling approaches.