

Preliminary results from modeling of radionuclide transfer through marine food web using a multi-organ fish model

W10 Workshop, Nov 3 at San Diego

Kyung Tae Jung,

Korea Institute of Ocean Science and Technology (KIOST)

Roman Bezhenar, Vladimir Maderich,

Institute of Mathematical Machine and System Problems (IMMSP)

Kyeong Ok Kim,

Korea Institute of Ocean Science and Technology (KIOST)

and Fangli Qiao

First Institute of Oceanography (FIO)

Brief description on the evolvement of marine radionuclide transfer biota model POSEIDON

Lepicard, S., Raffestin D., 1999. POSEIDON 3.0

-Equilibrium biota model with pelagic food chain

Heling, R. et al, 2002. BURN-POSEIDON

- -Non-equilibrium biota model with pelagic food chain
- -developed in the European system RODOS (Real-time Online DecisiOn support System) for the emergency response to nuclear accident

Bezhenar et al, 2016. Extended BURN-POSEIDON

-Non-equilibrium biota model with pelagic+benthic food chains

Marine food chain in Extended BURN-POSEIDON

13 state variables for pelagic + benthic marine species Application to Fukushima for Cs137 (Bezhenar et al, 2016)

Radionuclide in bottom sediment is transferred to benthic marine species & subsequently to pelagic species.

Eqs. in original & Extended BURN-POSEIDON

Phytoplankton and Algae: equilibrium approach

$$C_{phpl}(t) = C_{w}(t) CF_{phpl}$$

Other organisms: dynamical approach.

$$\frac{dC_{(pred)}}{dt} = a K_{1,prey}C_{f,prey} + b K_{w}C_{w}(t) - \frac{\ln 2}{T_{0.5}}C_{(pred)}$$
Accumulation Uptake from food Uptake from water Losses

where

a: Assimilation coefficient

b: Extraction coefficient

 $T_{0.5}$: Biological half life

NW Pacific marine biota model boxes

Global fallout

Fukushima release:137Cs 4PBq+8.2PBq

:90Sr 80~640TBq (2014), recently 160TBq

Results from the application of the extended BURN-POSEIDON model to Fukushima accident (137Cs release)

Problems in applying the extended BURN-POSEIDON model to Fukushima accident (90Sr release)

- -Little validation data, especially for deposit feeding invertebrates,
- -No appreciable improv. when model parameters for 137Cs were used, notably underestimating concentration in fish
- -Such tendency was also found in Baltic Sea.

Radionuclide accumulation in different tissues

Estimated according to the whole body-specific tissue concentration ratios (Yankovich et al, 2010)

Radionuclides: 134Cs, 137Cs, 3H

Flesh	Bones	Organs
90%	9%	1%

Radionuclides: 90Sr, 45Ca, 226Ra, 235U, 238U

Flesh	Bones	Organs
28%	62%	10%

Radionuclides: 60Co, 54Mn, 65Zn, 125Sb, 131I, 210Pb...

Flesh	Bones	Organs
32-44%	17-39%	25-40%

Marine food chain in POSEIDON-multi-organ fish model (Multi-BURN)

13 state variables for pelagic + benthic marine species with three target tissues for fishes (thus, 23 state variables)

Equations for Multi-BURN fish model with three target tissues

Concentration in flesh

$$\frac{dC_{flesh}}{dt} = a_f K_{1,prey}C_{f,prey} + b K_wC_w(t) - \frac{\ln 2}{T_{0.5,flesh}}C_{flesh}$$

Concentration in bones

$$\frac{dC_{bone}}{dt} = a_b K_{1,prey} C_{f,prey} + b K_w C_w(t) - \frac{\ln 2}{T_{0.5,bone}} C_{bone}$$

Concentration in organs

$$\frac{dC_{organ}}{dt} = a_o K_{1,prey} C_{f,prey} + b K_w C_w(t) - \frac{\ln 2}{T_{0.5,organ}} C_{organ}$$

Concentration in whole fish with consideration of mass fractions

$$C_{(fish)} = f_{flesh} C_{flesh} + f_{bone} C_{bone} + f_{organ} C_{organ}$$

Application of the Multi-BURN to Forsmark NPP

Forsmark NPP in Sweden

⁶⁰Co accumulation in fish for the Forsmark NPP case computed using Multi-BURN POSEIDON (benthic food chain included)

Non-piscivorous fish (herring)

Coastal predator (pike)

⁵⁴Mn accumulation in fish for the Forsmark NPP

Non-piscivorous fish (herring)

Coastal predator (pike)

Re-calculation of ⁹⁰Sr concentrations in Fukushima

Accidental release: 160 TBq in April 2011

Continuous release: 1 TBq/yr

Enhanced vertical mixing at the water-sediment interface

Conc. in piscivorous fish in the small coastal box

Multi-BURN

shark (black), seabass (green), rockfish (red)

Conclusions

- •Application of the new simple food chain model Multi-BURN to the near field of Forsmark NPP in Sweden for reproducing of ⁶⁰Co and ⁵⁴Mn concentrations in the fish shows good agreement with measurements
- •Application of the new model to area around Fukushima Dai-ichi NPP gives better agreement with measurements than standard BURN model for concentration of ⁹⁰Sr in fish
- •A more complex model which allows interaction between different organs are under development.

Thanks for your attention !!!!! Lyanks for your attention !!!!!