2016 PICES annual meeting W7: Delivering quality multi-parameter data from the coastal ocean

Optical discrimination of *Cochlodinium polykrikoides* blooms from Non-harmful blooms in Korean coastal waters

Yeseul <u>Kim</u>^{1,2}, Sinjae Yoo^{1,2,*}, Young Baek Son¹

 ¹ Jeju International Marine Science Center for Research & Education, KIOST, R Korea
 ² Ocean Science and Technology School, Korea Maritime and Ocean University/Korea Institute of Ocean and Science Technology Joint Program, Busan, R Korea

In Korean coastal waters, *C. polykrikoides* blooms have occurred continuously since the 1990s.

Table 1	
Table 1	

Red tide monitoring program in Korea.

Lee et al., 2013

Type of monitoring	Main objectives	Monitoring parameter	Responsible agency	Monitoring frequency
Monthly red tide monitoring	To investigate the status of dominant phytoplankton species and water quality	 Dominant species Cell density Water color Transparency, CTD, Chl a, nutrient 	NFRDI (National Fisheries Research and Development Institute)	Monthly (March-November)
Monitoring of potential red tide areas	To check causative species and affected areas	- HAB species - Cell density - Bloom area - Water color - Water temp., salinity	Fisheries extension service station under local government	Irregular (during red tide)
Aerial red tide surveillance	To check the location of affected areas	- Location of blooms - Water color	National Maritime Police Agency	Irregular (during red tide)
Monitoring of Cochlodinium	To forecast early warning of <i>Cochlodinium</i> blooms	 Phytoplankton species (abundance/succession) Cell density Water color Transparency, CTD, Chl a, nutrient 	NFRDI (National Fisheries Research and Development Institute)	June–October (biweekly)
Monitoring of shellfish poisoning	To check abundance of toxic species and poisoning level in the shellfish meat	 Toxic species (PSP, ASP, DSP) Cell density Water color Water temp., salinity Toxin level) NFRDI (National Fisheries Research In	stitute) Monthly/weekly (when poison is detected)

Research objective

(1) To find out the **bio-optical characteristics of** *C. polykrikoides.*

(2) To assess the possibility of optically discriminating *C* . polykrikoides blooms using Remote Sensing Reflectance in various water types.

Target of simulation

Conditions of simulation

We generated **a large dataset** of simulated R_{rs} spectra (n=2,275) in a wide range of bio-optical

*a_{ph} of four HAB species are measured from culture samples.
 **Optical parameters representing UPA are obtained from IOCCG data.

X **5** kinds of a_{ph} for five species X **5** different Chl a concentrations (5 10, 15, 20, and 30 µg l^{-1}) X **91** combinations of a_g and a_{dm}

2,275 spectra

Conditions of simulation

Optical properties of HAB species

- (1) The peak at 465 nm is the combined absorption maximum of chlorophyll c₂ and carotenoids which are synchronously detected as typical pigments of dinoflagellate species.
- (2) We could not find the unique and significant differences in spectral shapes of R_{rs} among HAB species.

Comparison of R_{rs} **spectra**

C. polykrikoides vs. UPA (Unspecified Phytoplankton Assemblages)

(1) The most conspicuous differences can be observed in the slope of the blue-green range (440-600 nm).

(2) This distinct feature of R_{rs} becomes more pronounced with increasing Chl *a* concentration.

Depression?

- This feature is an outcome of $a_{\rm ph}$ characteristics at 465 nm.
- The slope of R_{rs} for *C. polykrikoides* is flatter in the blue region but steeper than that of UPA in the green region.

Discrimination based on R_{rs} ratios

Multispectral analysis - Spectral band algorithm

(1) The optimal bands were selected to capture the depression of R_{rs}.
 (2) MODIS bands were adopted to examine the applicability of satellite data.

 $R_1: R_{rs}(555)/R_{rs}(531);$ $R_2: R_{rs}(488)/R_{rs}(443)$ which show maximum change in slore

which show maximum change in slope

In case of *C. polykrikoides*, **R1↑and R2↓**

Discrimination based on R_{rs} ratios

Availability of $R_{\rm rs}$ ratios in Korean coastal waters

- *In situ* R_{rs} data were obtained from the 2014 and 2015 summer hydrographic cruise in the south coast of Korea.
 Simulated R₋₋ ratio
- (1) *C. polykrikoides* blooms were clearly separated from UPA in simulation and *in situ* data.
- (2) Band ratios of *in situ* data closely tied with those of the simulation dataset.
- (3) Band ratios of *in situ C. polykrikoides* blooms and
 UPA occupy lower R₂ regions.

Summary

Data & Methods INTRODUCTI

RESULTS

- 1. We generated **a large dataset of simulated** R_{rs} to explore the possibility of optical discrimination of *C. polykrikoides* from non-HABs and/or other HABs.
- 2. *C. polykrikoides* and other HAB species show the **similar spectral shapes in** R_{rs} **because of similar** a_{ph} **characteristics**.
- 3. The distinct feature of a_{ph} for *C. polykrikoides* are translated into a depressed R_{rs} in the blue-green regions, while no depression was observed for UPA.
- 4. Band ratios that effectively depict this depression of R_{rs} were selected to discriminate *C. polykrikoides* from UPA.
 R₁: R_{rs} (555)/R_{rs}(531); R₂: R_{rs} (488)/R_{rs}(431)

General applicability of this analysis

The *in situ* data mostly fell within the ranges of the model data.

Conclusion

Data & Methods INTRODUCTION

DISCUSSION

CONCLUSION

- 1. *C. polykrikoides* blooms were clearly separated from UPA in optical conditions.
- 2. The **discrimination of** *C. polykrikoides* blooms from UPA seems **possible when Chl** *a* **concentration is sufficiently high**.
- 3. Our results can be applied to other geographical regions, because **our approach covers a much wider range of optical conditions**.
- 4. In order to apply **this approach in satellite remote sensing**, the standing issues, which cause the errors in retrieving R_{rs}, must be resolved.

Optics EXPRESS

Optical discrimination of harmful Cochlodinium polykrikoides blooms in Korean coastal waters

YESEUL KIM, 1,2 SINJAE YOO, 1,2," AND YOUNG BAEK SON1

¹Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology, Jeju 63349, South Korea ²Ocean Science and Technology School, Korea Maritime and Ocean University/Korea Institute of Ocean Science and Technology Joint Program, Busan 49112, South Korea ^{*}sjyoo@kiost.ac.kr

Abstract: We investigated the possibility of optically discriminating harmful algal blooms (HABs), focusing on *Cochlodinium polykrikoides*, the major HAB causative dinoflagellate species in Korean waters. We produced a large data set of simulated remote sensing reflectance (R_{rs}) spectra in a wide range of bio-optical conditions using Hydrolight software and bio-optical data provided by the International Ocean-Color Coordinating Group. The two R_{rs} band ratios ($R_{rs}(555)/R_{rs}(531)$ and $R_{rs}(488)/R_{rs}(443)$) were determined to be effective in discriminating high-density *C. polykrikoides* blooms. The results were consistent with *in situ* observations and seem applicable to diverse coastal environments. Our findings provide theoretical and quantitative criteria upon which in-water HAB detecting algorithms can be developed.

© 2016 Optical Society of America

OCIS codes: (010.4450) Oceanic optics; (010.1030) Absorption; (010.0280) Remote sensing and sensors.

References and links

- C. J. Gobler, A. Burson, F. Koch, Y. Tang, and M. R. Mulholland, "The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by *Cochlodinium polykrikoides* in New York estuaries (USA)," Harmful Algae 17, 64-74 (2012).
- 2. Y. B. Son, J. Ishizaka, J. C. Jeong, H. C. Kim, and T. Lee, "Cochlodinium polykrikoides red tide detection in the South Sea of Korea using spectral elassification of MODIS data," Ocean Sci. J. 46(4), 239-263 (2011).
- 3. Y. H. Ahn and P. Shanmugam, "Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters," Remote Sens. Environ. 103(4), 419–437 (2006).

THANK YOU FOR your ATTENTION!

yees0408@kiost.ac.kr