Long-term monitoring of the toxic dinoflagellate *Alexandrium tamarense* and environmental factors in Osaka Bay, eastern Seto Inland Sea, Japan: History of invasion and expansion of toxic blooms

Keigo Yamamoto¹ Ichiro Imai²

- 1: Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
- ²: Graduate School of Fisheries Sciences, Hokkaido University

Location of Osaka Bay

enclosed coastal sea in Japan Osaka Bay is located in eastern end of Seto Inland Sea.

Elliptical shape

Long axis: 60 km Short axis: 30 km Square measure: 1,450 km²

Average depth:28 m About half of the bay is shallower than 20 m

From north east of the bay, large rivers through into the bay (Yodo R., Yamato R.)

Big cities such as Osaka city, Kobe city, Sakai city and Kyoto city are located along these rivers

In former Osaka Bay (until about 1990s)

Osaka Bay is infamous for eutrophication

Red tides were frequently observed and dominant group was diatoms

Plankton monitoring

moto(絵画教室アトリエ・ポポロ)

Countermeasures for eutrophication

Special law

"Law Concerning Special Measures for Conservation of the Environment of the Seto Inland Sea" (enacted in 1973)

- → # Control of the total pollutant load # Reduction of the total quantity of organic pollutants in term of Chemical Oxygen Demand (COD)
- Control of total P inputs (from 1979)

Control of total N inputs (from 1996)

Occurrences of red tides in the Seto Inland Sea and Osaka Bay from 1970 to 2015

Expansion of PSP area in Japan

These are species contaminated with PSP in Osaka Bay

Mussel

Carnivorous conch

Swimming crab

Changes in annual maximum toxicity in 3 bivalves

Causative Phytoplankton of Paralytic Shellfish Poisoning

Causative species	Taxon	Growth period in Osaka bay
Alexandriuum acatenella	Dinofra.	
Alexandriuum catenella	Dinofra.	Spring to early summer
Alexandrium tamiyavanichii	Dinofra.	Autumn to winter
Alexandrium fundyense	Dinofra.	
Alexandrium minutum	Dinofra.	
Alexandrium tamarense	Dinofra.	Early spring to late spring
Gymnodinium catenatum	Dinofra.	Summer to autumn
Pyrodinium bahamense	Dinofra.	
Anabena circinalis	Ciano.	

Alexandrium tamarense

Alexandrium catenella

Gymnodinium catenatum (photo by Dr. Sakamoto)

Alexandrium tamiyavanichii (photo by Dr. Nagai)

From 2002, nearly every year bivalves in Osaka Bay contaminated with PSP in spring and furthermore red tide have been observed.

☐ It is rare case for *A. tamarense*

Bioluminescence observed in a fishing port during a red tide in 2007

(modified from Yamamot0 2010)

Aquatic animals killed by the bloom of Alexandrium tamarense at fishing port

Today's contents

 Trends of Alexandrium tamarense blooms in Osaka Bay in recent years

2. Long-term changes in environmental factors in Osaka Bay

3. Why has become massive blooms in recent years?

Trends of Alexandrium tamarese blooms in Osaka Bay in recent years

2. Long-term changes in environmental factors in Osaka Bay

3. Why has become a massive bloom in recent years?

Temporal changes in cell densities of *A. tamarense* vegetative cells from 2002 to 2016

Relationships between temperature and cell density of *A. tamarese* from 2002 to 2016

Relationships between salinity and cell density of *A*. tamarese from 2002 to 2016

Relationships between nutrients concentration and cell density of *A. tamarese*

Relationship between chlorophyll *a* concentration and cell density of *A. tamarese* and frequency distribution

Conclusion 1

Alexandrium tamarense was observed in high cell density when,

15 °C in temperature and 30 in salinity
Low nutrients, especially in phosphorus
Low chlorophyll *a* concentration

 Trends of Alexandrium tamarese blooms in Osaka Bay in recent years

2. Long-term changes in environmental factors in Osaka Bay

3. Why has become a massive bloom in recent years?

Analysis of long-term fluctuations

Study area and sampling stations

- Environmental factor
- Sampling station for phytoplankton

Material and Method

Environmental factor

- Samples were collected 4times per year(Feb., May, Aug., Nov.) at 20 stations(blue circle)
- Water temperature, Salinity, Dissolved inorganic nitrogen (DIN), Dissolved inorganic phosphate (DIP), chlorophyll a from surface layer.

Phytoplankton data

- Use the research result surveyed by Osaka pref. government.
- Water samples were collected by Bandon water bottle from 1m layer at 15 stations(red circle)
- Every months in neap tide

Long-term variations in water temperature (1972-2016, surface layer at 20 sampling stations)

Long-term variations in salinity (1972-2016, surface layer at 20 sampling stations)

Long-term variations in transparency (1972-2016, at 20 sampling stations)

Long-term variations in DIN

(1972-2016, mean of surface layer and bottom layer at 20 sampling stations)

Long-term variations in phosphate

(1972-2016, mean of surface layer and bottom layer at 20 sampling stations)

Long-term variations in chlorophyll a (1977-2016, in surface layer at 20 sampling stations)

year

Long-term variation in yearly percent taxonomic group composition of phytoplankton from 1976 to 2012

Long-term variations in monthly total cell density and yearly percent genus composition of diatoms in Osaka Bay

Long-term variations in monthly total cell density and yearly percent species composition of diatoms in Harima-Nada

 Occurrence of Alexandrium tamarese and environmental factors in Osaka Bay in recent years

2. Long-term changes in environmental factors in Osaka Bay

3. Why has become a massive bloom in recent years?

Long-term variations in annual maximum cell density of *A. tamarense*

Long-term fluctuations of water temperature and salinity from February to May May: +0.04°C y⁻¹

Long-term fluctuations of DIN, DIP and chlorophyll *a* from February to May

Relationships between DIN, DIP, chlorophyll *a*, cell density of *Skeletonema* spp. and cell density of *A. tamarense*

Long-term variation in yearly percent species composition of diatoms in the surface layer of Osaka Bay during *A. tamarense* bloom period (February To May)

Annual fluctuation of maximum cell densities of *A. tamarense* in Harima-Nada and Osaka Bay from 1984 to 2016

About 10 years phase difference

(modified from Yamamoto et al. 2017)

Relationship between dominant phytoplankton species and nutrient levels in three semi-enclosed seas of Japan

Recent years

Conclusion

In Osaka Bay, the environmental condition getting well, but unexpected problems have arisen

That is,

- 1. A. tamarense has grown with the decline in nutrient levels, especially as the nitrogen declines.
- 2. The cause of large bloom of *A. tamarense* is related to the reduction of the competing species due to the decline of nutrients level.
- 3. But it is interesting to see whether the growth of *A. tamarense* will change or not, when nutrients further decreases from now on.

Thanks for your attention !!

Morning grow in Osaka Bay