Accuracy of surface current velocity measurements obtained from HF radar along the east coast of Korea

Hanna Na, Kuh Kim and Kyung-II Chang

School of Earth and Environmental Sciences/ Research Institute of Oceanography Seoul National University, Seoul, Korea

Introduction - HF radar measurement

Radar measures the **range**, **bearing**, and **speed** of a target.

Where radial currents from Site 1 and 2 overlap (e.g.,), the resultant vector provides both speed and direction of the currents

Introduction – East/Japan Sea

- Inflow through the Korea/Tsushima Strait
- East Korea Warm Current (EKWC) and its separation position

Introduction – Accuracy of HF radar measurement

Accuracy

Typical RMS error: 7 cm/s

Reference	RMS error (cm/s)	location
Emery et al., 2004	7~19	Along the California coast
Yoshikawa et al., 2006	6.62~11.3	Korea/Tsushima Strait
Chapman and Graber, 1997	~ 15	Along the North Carolina Coast

- To compare surface current velocity from HF radar measurement with *in situ* measurement
- To evaluate the accuracy of the HF radar measurement
- To discuss the source of error

HF radar measurement

HF radar measurement

- Frequency: ~ 13 MHz
- Range: ~ 70 Km
- Resolution: ~ 3 Km
- Temporal interval: hourly

Surface current velocity vectors using site 1 and site 2 for three months from April to June, 2007

In Situ measurement

ESROB

East Sea Real-time Ocean monitoring Buoy

Wind speed & direction
Air pressure, humidity
Down-looking ADCP(300kHz)
SBE37(T,P,C) 6EA

	U- velocity	V-velocity
Number of samples	86	86
Regression coefficient, A	-0.26	0.96
Regression coefficient, B	3.62	2.52
Regression coefficient, A'	-0.47	1.02
Correlation coefficient	-0.17	0.91
RMS error (cm/s)	7.09	6.2

Why do U-velocities show large difference, while V-velocities show small difference?

$$\sigma^2_{diff} = \sigma^2_{HF} + \sigma^2_{in \ situ} + \sigma^2_{physics}$$

Chapman et al., 1997

HF radar measurements

In Situ measurements

Near surface currents (~ 1m)

Averaged over 3 km square

Typically greater than the HF radar's effective depth

At essentially a single point in space

Discussion

•GDOP (Geometrical Dilution of precision)

- Coefficient of uncertainty that characterizes the effect of the geometry of the coupled radar system on the measurement and position determination errors
- A low GDOP corresponds to an optical geometric configuration of radar stations

Discussion

- 1 SNUA 2 SNUB
- $\alpha = 27.31^{\circ}$ $\theta = 60.31^{\circ}$ $\sigma_n = 0.98 \times \sigma$ $\sigma_e = 1.79 \times \sigma$ North GDOP: 0.98

East GDOP: 1.79

- $\boldsymbol{\alpha}$: the mean look angle
- $\boldsymbol{\theta}$: half of the angle of the intersecting beams, and
- $\boldsymbol{\sigma}$: the root mean square differences in the current estimates

Summary

Objectives

- To compare surface current velocity from HF radar measurement with *in situ* measurement
- To evaluate the accuracy of the HF radar measurement
- To discuss the source of error

Results

- More low-frequency variability of the V-velocity

High correlation coefficient for V-velocity

- RMS error of hourly mean U-velocity and V-velocity were about 13 and 10 cm/s, respectively. RMS error of daily mean U-velocity and V-velocity were about 7 and 6 cm/s, respectively

- High east GDOP value at the position of *in situ* measurement explained low correlation coefficient and large RMS error of Uvelocity Accuracy of surface current velocity measurements obtained from HF radar along the east coast of Korea

Thank you.

References

- R.D. Chapman, L.K. Shay, H.C. Graber, J.B. Edson, A. Karachintsev, C.L. Trump and D.B. Ross (1997), "On the accuracy of HF radar surface current measurements: intercomparisons with ship-based sensors," J. Geophys. Res., 102, pp. 18,737-18,748.
- D.A. Trujillo, F.J. Kelly, J.C. Perez, H.R. Riddles, J.S. Bonner, Accuracy of Surface Current Velocity Measurements Obtained from HF Radar in Corpus Christi Bay, Texas, IEEE, 2004.
- Yoshikawa, Y., A. Masuda, K. Marubayashi, M. Ishibashi, and A. Okuno (2006), On the accuracy of HF radar measurement in the Tsushima Strait, J. Geophys. Res., 111, C04009, doi:10.1029/2005JC003232.
- Emery, B., L. WashBurn, J. Harlan, Evaluating Radial Current Measurements from CODAR High-Frequency Radars with Moored Current Meters, JAOT, 2004

How to increase the accuracy

Antenna Pattern Measurement (APM)

Antenna patterns are often distorted when an antenna is deployed in the field. Tests indicate that the local environment, not system hardware, causes the most significant distortion of the pattern from the theoretical shape.

Sources of U-velocity difference

Spatial characteristics of U-velocity $\Rightarrow \sigma^2_{physics}$

if U-velocity has large spatial variability near the *in situ* measurement location

if U-velocity has large vertical shear near the *in situ* measurement location