Pteropods in Southern Ocean ecosystems: a review

Brian Hunt, Evgeny Pakhomov, Graham Hosie, Volker Siegel, Peter Ward and Kim Bernard

Earth and Ocean Sciences

What are Pteropods?

Class: Gastropoda

Order Thecosomata (shelled pteropods)

Order Gymnosomata (naked pteropods)

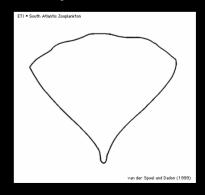
Order Thecosomata

(shelled pteropods)

4 Southern Ocean species

Limacina helicina

Limacina retroversa



Clio pyramidata

Photo: R. Giesecke

Clio piatkowskii

Order Gymnosomata

(naked pteropods)

2 Southern Ocean species

Clione limacina

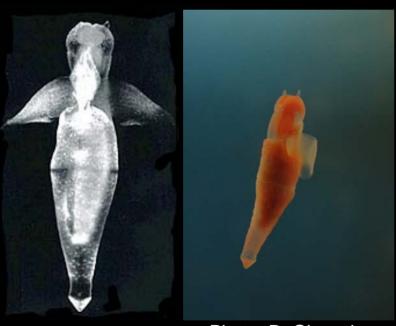


Photo: R. Giesecke

Spongiobranchaea australis

Why the interest in pteropods?

- > ubiquitous but ignored component of SO zooplankton
- few studies of their biology

➤ ocean acidification — SO surface waters to begin to become under-saturated with respect to aragonite by 2050 (Orr et al. 2005)

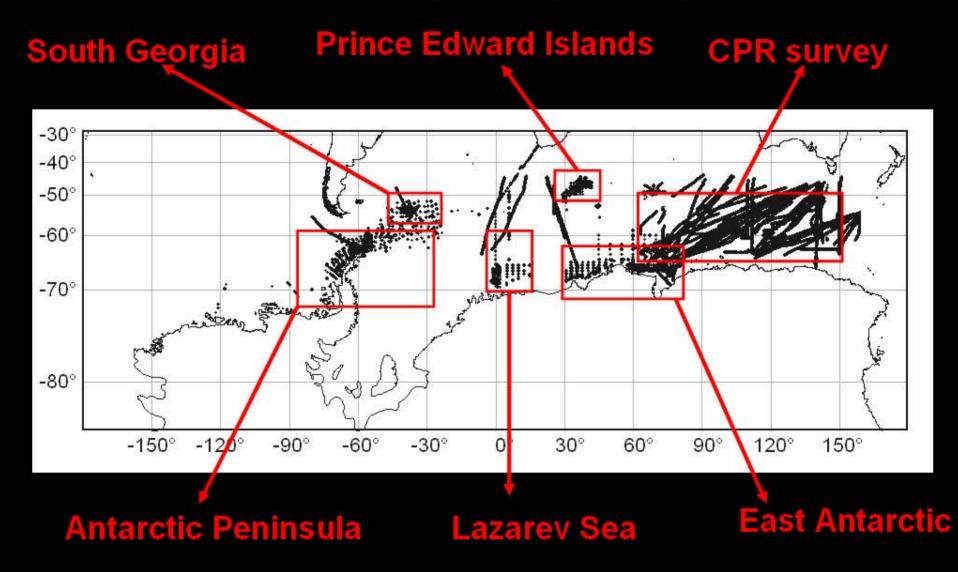
ocean acidification

reduction in abundance and ultimately a northward shift in the distribution of thecosome pteropods

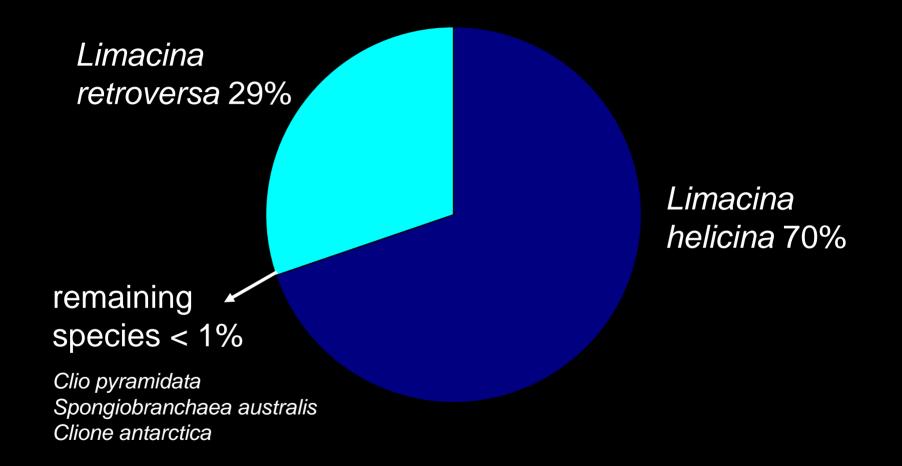
How will this impact on Southern Ocean ecosystems?

Aim: to investigate the role of pteropods in the SO

- density contribution to zooplankton communities
- feeding biology and grazing impact
- ➢ life cycle
- > contribution to carbon flux


Densities of pteropod species

- 45 voyages 2848 samples
- CPR survey 16456 samples

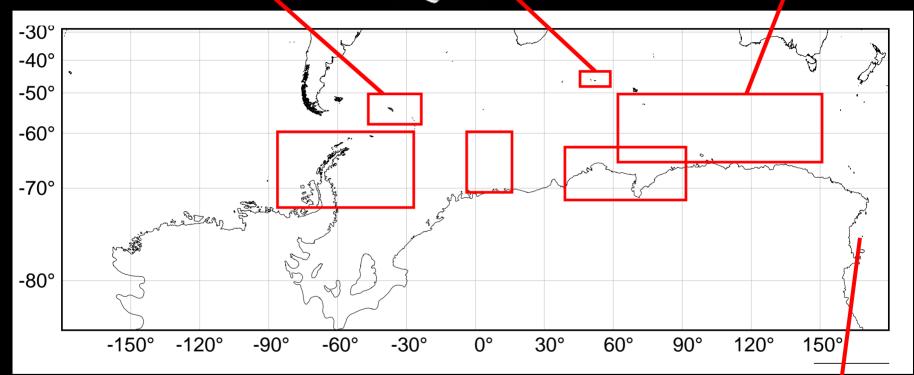


Densities of pteropod species

Relative proportions of pteropod species

Limacina helicina

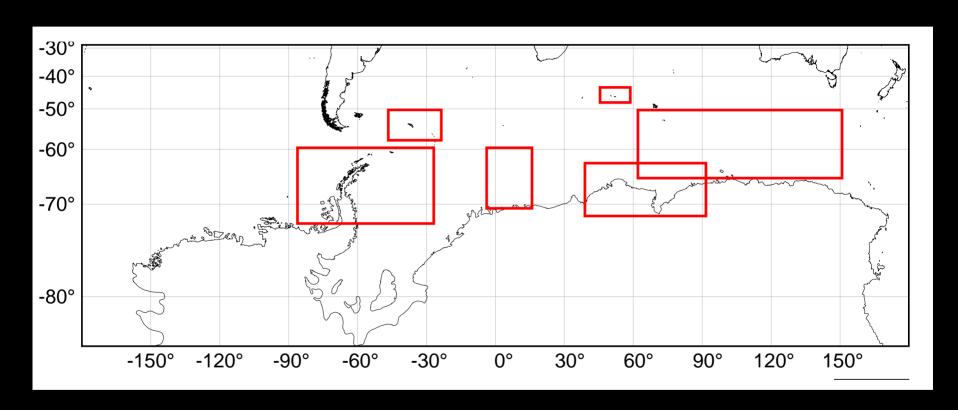
Limacina retroversa


Limacina spp.

ave 165 ind.m⁻³ max 2681 ind.m⁻³

ave 60 ind.m⁻³ max 802 ind.m⁻³ ave 3.7 ind.m⁻³ max 479 ind.m⁻³

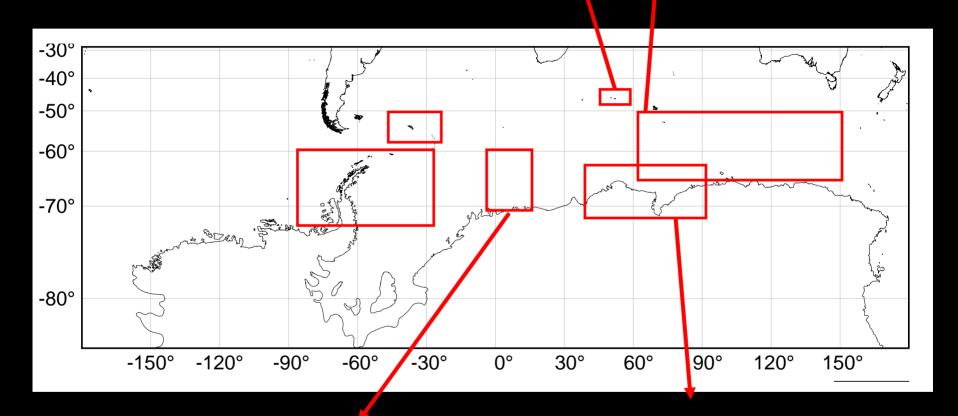
All sample ave (Nov-Apr)


Limacina helicina > 24.89 ind.m⁻³ Limacina retroversa > 15.75 ind.m⁻³

Limacina helicina

> 1000 ind.m⁻³

Proportion of total zooplankton



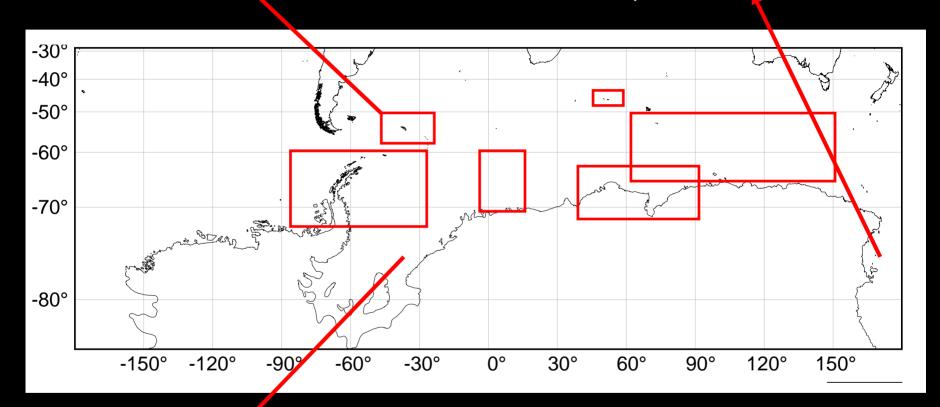
Prince Edward Islands meso

1996-2005 ave = 11% 2000 ave = 27%

CPR survey meso

1997-2005 ave = 2.5 ± 8.6

Lazarev Sea


meso ave = 1.1% macro ave = 1.1%

East Antarctic macro

1985-1990 ave = 11.6% 1985, 1987 ave > 20%

South Georgia meso

11 – 53 % (density) Atkinson et al 1996 Pakhomov et al 1997 Ross Sea
63 % (density)
23 % (biomass)
Hopkins 1987

Weddell Sea

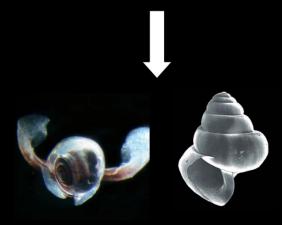
17 % (biomass)
Boysen-Ennen et al 1991

Abundance summary

> Pteropods, particularly *Limacina* species, are an abundant group, with regionally very high densities

➤ Pteropods can make a substantial contribution to both meso- and macrozooplankton communities

Trophic Ecology


Trophic Ecology: Gymnosomes

Clione limacina

monophagous

Trophic Ecology: Thecosomes

"Flux feeding" Jackson (1993)

trapping of motile organisms

Gilmer & Harbison (1986)

mucous web

Diet: Gut content analysis

Only 4 studies in the Southern Ocean:

- > No data for Limacina retroversa
- ➤ Limacina helicina (2-3mm) diatoms and dinoflagellates (Hopkins 1987)
- Clio pyramidata dinoflagellates (>40%) microzooplankton (~30%) (Hopkins & Torres 1989) zooplankton (~25%)

Northern hemisphere - Arctic and sub-Arctic

- Limacina retroversa diatoms and dinoflagellates
- Limacina helicina diatoms and dinoflagellates
- ➤ Limacina helicina (5-13mm) zooplankton ~ 46% of prey volume Gilmer & Harbison (1986)

Thecosome diet summary

 phytoplankton dominated diet indicated by stable isotopes and lipid analysis

possible shift to increased carnivory at larger size

Grazing Impact

only 6 published studies

Sub-Antarctic Zone

Limacina retroversa

- \rightarrow Ave IR = $\overline{1430}$ ng(pig)ind⁻¹.d⁻¹ 6 years (April/May)
- > ave 25 % of community grazing impact (max = 60%)

Grazing Impact

Seasonal Ice Zone

<u>Limacina helicina</u>

> Ave IR = 3179 ng(pig)ind⁻¹.d⁻¹ 2 years (Dec/Jan)

Clio pyramidata

- Ave IR = 22192 ng(pig)ind⁻¹.d⁻¹
 1 year (Dec/Jan)
- > up to 40% of community grazing impact

Grazing Impact

➤ Ingestion rates of thecosomes were amongst the highest of any grazers, and in the case of *Clio pyramidata* were equivalent to *Salpa thompsoni*

➤ Thecosomes can therefore be major contributors to community grazing impact

Carbon Flux

Faecal pellets

- assimilation efficiency *unknown*
- FP production rates *unknown*
- Clio spp. sink up to 650m.d⁻¹

Mucous flocs

- discarded nets; reproduction
- scavenge suspended particles
- sink at 300m.d⁻¹ up to 1000m.d⁻¹

Consumption by predators

Zooplankton, benthos, pelagic fish (up to 40%) demersal fish (up to 90%)

Aragonite shells

ballast for organic carbon transfer
 e.g. Ross Sea - 56-96% of organic
 carbon flux in April-June
 >50% of carbonate flux south of PF

Conclusions

> Pteropods are an abundant group & make a substantial contribution to both meso- and macrozooplankton communities

➤ Thecosomes have amongst the highest ingestion rates, and their grazing impact can be substantial

➤ Thecosomes are potentially important contributors to Southern Ocean carbon flux

Knowledge Gaps

Life cycle

A single study of L. retroversa in sub-Antarctic (Dadon & de Cidre 1992)

- population structure
- Intraspecific regional variation in population and size structure

Feeding studies

- > the role of carnivory in thecosomes significance for trophic models
- mucous web production rates

Carbon Flux

- > faecal pellet production and its relationship to food quality
- ▶ faecal pellet morphology sediment trap studies

