Tasmanian Aquaculture and Fisheries Institute # Copepod grazing on Gymnodinium catenatum Kerrie Swadling, Anita Alexander University of Tasmania Susan Blackburn, Angela Holmes CSIRO Marine and Atmospheric Research Aquaffin (CRC for Sustainable Aquaculture of Finfish CSIRO Incorporating sediment dating and historical samples 1971 - Spring Bay, Tas 1975 - Port Lincoln, SA 1980 - Derwent/Huon, Tas 1993 - Port Phillip Bay, Vic 1993 - Victorian coast 1996 - Hawkesbury R., NSW # Gymnodinium catenatum rDNA-its genotype distribution # Australian Gymnodinium catenatum # Gymnodinium catenatum in Tasmania - Paralytic shellfish toxins (saxitoxins) - Harmful algal blooms (HAB) - Blooms (10⁴ 10⁶ cells) from December until July - Toxic and non-toxic strains - Chain length up to 32 cells - Cultured cells have similar morphology and size range as wild cells # Toxic dinoflagellates in the food chain # Do Tasmanian copepods graze on introduced Gymnodinium catenatum? # Grazing experiments - Single prey: toxic strain, non-toxic strain (densities: 10⁶, 10⁵, 10⁴) - Mixed prey: toxic strain with *Isochrysis* - Copepods collected from Huon Estuary - 24 acclimation period - Bottle clearance methods - Incubated for 24 hours on plankton wheel (<1 rpm) - Triplicate treatments : Triplicate controls # Centropages australiensis #### Paracalanus indicus #### Acartia tranteri # **Egg Production** - Within 2 hours of being caught females were isolated in 50 ml chambers and incubated overnight at ambient temperature then diet changed to: - Isochrysis - Toxic G. catenatum - Non-toxic G. catenatum #### Eggs female⁻¹ d⁻¹ #### Gymnodinium catenatum | | Ambient | Iso | Non-toxic | Toxic | |-------------|---------|-----|-----------|-------| | Centropages | 56 | 48 | 51 | 9 | | Paracalanus | 20 | 31 | 16 | 11 | | Acartia | 34 | 16 | 3 | 4 | # Survivorship - Eggs were counted and incubated in 1 L bottles - Incubated 24 h on a plankton wheel - Nauplii of each species were split into 2 groups - Group 1 fed on Isochrysis and toxic G. catenatum - Group 2 fed on Isochrysis and non-toxic G. catenatum - Development and survivorship were monitored for 18 days # Survivorship - High initial mortality - No species developed past CIII - Centropages australiensis had slightly longer survival on the nontoxic strain - Paracalanus indicus had somewhat better survival on nontoxic strain - Acartia tranteri showed poor survivorship overall and did not develop past the naupliar stages # Summary - Copepods ingested both toxic and non-toxic strains of Gymnodinium catenatum, alone and in mixed prey - Centropages australiensis: highest CR, highest EPR, but low survivorship - Paracalaus indicus: moderate CR, EPR and survivorship (generally better on non-toxic strain) - Acartia tranteri: lowest CR, EPR and very poor survival on both strains #### Conclusions - While the copepods have probably only co-existed with G. catenatum for the last 40 years they do not avoid grazing on this toxic dinoflagellate - There were different responses from the three species Centropages > Paracalanus > Acartia - Poor survivorship overall indicates that factors other than G. catenatum toxins were influencing copepod development ### Future plans - Measuring toxicity in prey and grazers - Looking further up the food chain? - Grazing on a natural Gymnodinium catenatum bloom Time travelling