Biological responses to oceanic climate variability off Oregon and Washington USA in three calanoid copepods: *Acartia tonsa*, *Calanus pacificus*, and *Paracalanus parvus* Jesse F. Lamb¹, Bill T. Peterson², Cheryl A. Morgan¹, Julie E. Keister³ - ¹ Cooperative Institute for Marine Resources Studies, Oregon State University, Hatfield Marine Science Center, Newport, OR USA - ² Northwest Fisheries Science Center, NOAA Fisheries, Hatfield Marine Science Center, Newport, OR USA - 3 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR USA # Outline - Overview of the recent SST anomalies in the Northeast Pacific - SST comparisons to Copepod Community structure - Comparisons of three warm water copepod species and their relation to local changes in SST (and climate variability) - Conclusions # Sampling Methodology 1/2m diameter 202 µm mesh Vertical Net Hauls from a maximum depth of 100 m to the surface $\cdot 1998 - 2005$ 44 – 48°N Latitude, •BPA Salmon Project: June & September sampling Newport Hydrographic Line Project: Biweekly, 12+ years 847 total samples used for analysis ### **NEP Sea Surface Temperature 1998 - 2006** ### **Copepod Response to Climate** ### BPA Sampling – June & September ### **Warm Water Species** Acartia tonsa Calanus pacificus Paracalanus parvus ### **Cold Water Species** Acartia longiremis Calanus marshallae Pseudocalanus spp. # Occurrence of *A. tonsa*, *C. pacificus*, and *P. parvus* in BPA project samples ## Acartia tonsa - Only present in very warm years - Primarily inshore - Thrived up north - 1998 abundance lower than 2003 - 05 # Calanus pacificus - Largest density during 1998 - Found at and beyond the shelf break during cold years - Primarily North of CR during September - 1998 abundance higher than 2003 - 05 #### Calanus pacificus Center of Density # Paracalanus parvus - Fairly ubiquitous through the years - Lowest abundances during June 1999 – 2002, but still present shelf-wide - Most abundant copepod during 2003 -05 #### Paracalanus parvus Center of Density ### NH05 Sampling - Year Round ### NH05 - Egg Production Experiments # **Synopsis** Individual Differences between Species | marriada Binerended Between Opedico | |--| | Large fluctuations in both presence and abundance during warm years could indicate stronger forcing from the south, or greater onshore transport of surface waters Could be the best indicator of strong, warm water anomalous events in our system due to it's extreme sensitivity to upwelling conditions | Calanus pacificus Continuing presence near the shelf break during colder years could indicate a push of more oceanic/transition zone water (i.e. during El Nino, winter seasons) Very high SST during the summer of 2004 – 05 seemed to have a negative effect on abundances Paracalanus parvus Always present in both cold and warm years, yet it's largest relative abundance was in the warm years of 2003 -05, where it became the dominant copepod species # Conclusions - Even though all three copepod species were a part of the warm water community, their differential response to the El Niño of 1998 versus the anomalously warm years of 2003 – 05 suggest different life history responses. - The change in copepod dominance during the "warm years" (2003-2005) might be an example of how an upwelling system might be affected by a persistently warm climate. # Acknowledgements Projects... BPA Salmon Project GLOBEC People... Leah Feinberg Tracy Shaw Jennifer Menkel Hongsheng Bi And anyone else who helped deploy, retrieve, or process plankton on our cruises!!! #### Vessels... R/V Elahka R/V Sacajawea F/V Frosti F/V Predator F/V Sea Eagle