

Biological responses to oceanic climate variability off Oregon and Washington USA in three calanoid copepods: *Acartia tonsa*, *Calanus pacificus*, and *Paracalanus parvus*

Jesse F. Lamb¹, Bill T. Peterson², Cheryl A. Morgan¹, Julie E. Keister³

- ¹ Cooperative Institute for Marine Resources Studies, Oregon State University, Hatfield Marine Science Center, Newport, OR USA
- ² Northwest Fisheries Science Center, NOAA Fisheries, Hatfield Marine Science Center, Newport, OR USA
- 3 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR USA

Outline

- Overview of the recent SST anomalies in the Northeast Pacific
- SST comparisons to Copepod Community structure
- Comparisons of three warm water copepod species and their relation to local changes in SST (and climate variability)
- Conclusions

Sampling Methodology

1/2m diameter 202 µm mesh
 Vertical Net Hauls from a maximum depth of 100 m to the surface

 $\cdot 1998 - 2005$

44 – 48°N Latitude,

•BPA Salmon Project: June & September sampling

Newport Hydrographic Line
 Project: Biweekly, 12+ years

 847 total samples used for analysis

NEP Sea Surface Temperature 1998 - 2006

Copepod Response to Climate

BPA Sampling – June & September

Warm Water Species

Acartia tonsa

Calanus pacificus

Paracalanus parvus

Cold Water Species

Acartia longiremis

Calanus marshallae

Pseudocalanus spp.

Occurrence of *A. tonsa*, *C. pacificus*, and *P. parvus* in BPA project samples

Acartia tonsa

- Only present in very warm years
- Primarily inshore
- Thrived up north
- 1998 abundance lower than 2003 - 05

Calanus pacificus

- Largest density during 1998
- Found at and beyond the shelf break during cold years
- Primarily North of CR during September
- 1998 abundance higher than 2003 - 05

Calanus pacificus Center of Density

Paracalanus parvus

- Fairly ubiquitous through the years
- Lowest abundances during June 1999 – 2002, but still present shelf-wide
- Most abundant copepod during 2003 -05

Paracalanus parvus Center of Density

NH05 Sampling - Year Round

NH05 - Egg Production Experiments

Synopsis

Individual Differences between Species

marriada Binerended Between Opedico
 Large fluctuations in both presence and abundance during warm years could indicate stronger forcing from the south, or greater onshore transport of surface waters Could be the best indicator of strong, warm water anomalous events in our system due to it's extreme sensitivity to upwelling conditions

Calanus pacificus
 Continuing presence near the shelf break during colder years could indicate a push of more oceanic/transition zone water (i.e. during El Nino, winter seasons)
 Very high SST during the summer of 2004 – 05 seemed to have a negative effect on abundances

Paracalanus parvus

 Always present in both cold and warm years, yet it's largest relative abundance was in the warm years of 2003 -05, where it became the dominant copepod species

Conclusions

- Even though all three copepod species were a part of the warm water community, their differential response to the El Niño of 1998 versus the anomalously warm years of 2003 – 05 suggest different life history responses.
- The change in copepod dominance during the "warm years" (2003-2005) might be an example of how an upwelling system might be affected by a persistently warm climate.

Acknowledgements

Projects...

BPA Salmon Project GLOBEC

People...

Leah Feinberg Tracy Shaw Jennifer Menkel Hongsheng Bi

And anyone else who helped deploy, retrieve, or process plankton on our cruises!!!

Vessels...

R/V Elahka R/V Sacajawea F/V Frosti F/V Predator F/V Sea Eagle

