

SANTOSH KUMAR SARKAR BHASKAR DEB BHATTACHARYA

Copyright Florian Hantzsche

ABOUT SUNDARBANS

- Indian Sundarbon is situated in the estuarine phase of the River Ganges, northeast coast of Bay of Bengal.
- Comprises 9600 km2 area, out of which 4264 km2 of intertidal area covered with mangrove.
- Unique bioclimate zone in the land ocean boundary evolved during Holocene period.
- Climate is humid (up to 96%), tropical and the seasons are pronounced with 4-month duration. Premonsoon (March to June), monsoon (July to October) and postmonsoon (November to February).

Materials and Methods

- zooplankton samples were collected using a Ring Trawl Net (Hydro-Bios No. 438 700, Germany), mouth area 0.78 sq. m, mesh size 200 μm.
- The volume of water filtered was measured by a calibrated Flow-meter (Hydro-Bios No. 438 110, Germany) mounted in the mouth of the net.
- The net was trawled on water surface for 10 minutes for each sampling. The zooplankton was fixed with 4% buffered formaldehyde solution and taken to the laboratory for further analyses.
- diversity index (H') and species richness (S) computed using Shannon- Weaver (1963) and Margalef (1968) respectively.

HYDROLOGY

- Hydrology of the estuarine environment presents a cyclic pattern, Characterized by large amount of precipitation and tidal interplay.
- A marked difference in the hydrological parameters in different seasons was noticed for all the 3 stations.
- Water temperature higher in premonsoon months (March-June) and lower during postmonsoon months (November-February).
- Ranged from 21oC (January) to 31oC (June) normal for a tropical estuary.
- Salinity gradient increased to a maximum level during late premonsoon months paralleling with higher temperature and decreased during monsoon months.
- pH and dissolved oxygen values did not show any major fluctuation.
- Sechhi disc reading showed that Gangasagar experienced high turbidity throughout the year.

COPEPODS IN STUDY AREA

- Copepods, dominating group of the plankton community throughout the year constituting 73 - 97% of total zooplankton.
- Bimodal type of copepod distribution closely followed that of biomass - relatively higher values in June/July, a gradual trend of rise in January/February. A sharp fall in copepod population associated with lower diversity of copepod species recorded in late monsoon months.
- Out of 32 genera and 54 species, calanoids were represented by 17 genera and 37 species, cyclopoids by 7 genera and 9 species, harpacticoids by 8 monogeneric species.
- During monsoon months, a good assemblage of oligohaline species, Acartiella keralensis, Pseudodiaptomus binghami, Halicyclops tenuispina, Mesocyclops and Cyclops were recorded at station 1 for the greater inflow of fresh water from Hugli River.

Diversity Index of Copepods

	Diversity	Species	Species evenness		
	Index	richness			
Station 1	1.87	2.41	0.58		
Station 2	2.06	3.19	0.49		
Station 3	1.23	1.05	0.52		

Station Kachuberia

Station Chemaguri

Station Sagar south

Showing relationship between zooplankton population and hydrological parameters at station 2.

Correlation values (r)

Zooplankton	Water	7) 27 1	Dissolve	Transp	Transparency	
	temperature	salinity	Oxygen	рН		
Paracalanus spp.	-0.0851	0.4904	- 0.3441	0.6012	0.4273	3 1
Acrocalanua spp.	-0.0065	0.4637	- 0.36	0.6643	0.4953	
Acartia sp.,	-0.8495	- 0.3150	0.1069	0.0947	0.3460	
Acartiella sewelli	0.2526	- 0.7200	0.7246	- 0.7672	- 0.4028	
Labidocera euchaeta	0.0074	0.4752	0.4329	0.6018	0.5204	
Eucalanus subcrass	us 0.1092	0.7647	- 0.6283	0.4790	- 0.0124	
P.Annandalei	-0.3334	-0.2257	0.1316	0.0648	0.0064	
Oithona sp.,	-0.2160	0.4802	- 0.4034	0.6549	0.5954	
Saphirella indica	0.2309	0.8892	- 0.5628	0.541	0.1437	

Cntd.....

Continuation of previous slide

Correlation values (r)

Zooplankton	Water	9 60	Dissolve	Transparency	
	temperature	salinity	Oxygen	рН	
Microsetella rosea	0.4039	0.6671	- 0.3625	0.4509	0.1616
Lucifer hanseni	0.4328	- 0.3206	0.5062	- 0.4639	- 0.3657
Hydromedusae	0.4464	0.7833	- 0,5076		0.0474
Amphipoda	-0.0152	0.7098	- 0.4523	0.5096	0.3472
Mysid	-0.0772	-0.2033	- 0.1749	-0.1384	- 0.0213
Polychaete Larvae	0.1878	0.3892	- 0.0903	0.3806	0.3333
Nauplius	-0.8195	0.0736	- 0.1683	0.4462	0.5696
Zoea	-0.7614	0.1462	- 0.2150	0.4973	0.5184
Megalopa	-0.6470	0.0092	- 0.0142	0.3318	0.2881

Blue = Significant at 5% level

Red = Significant at 1% level

Correlation matrix for copepods belonging to 10 major families at Sagar South.

-	The last		1 90	1	7773	10 100	BELLEVI .	100	BANK B
	Α	В	C	D	E	F	G	н	1
	<u></u>	-	-	-			-	-	-
В	-0.53	-	-	100		-	- 1		
С	0.86	-0.58	-	-				*	-
D	0.90	-0.47	0.18	-	ASIA.		-		100
E	-0.55	0.84	-0.61	-0.43	-		-	-	
F	0.51	-0.52	0.50	0.54	-0.49			14	
G	0.87	-0.39	0.90	0.83	-0.49	0.51		100	1.00
Н	-0.17	-0.17	0.01	-0.20	-0.03	-0.36	-0.24		
1	0.83	-0.49	0.61	0.78	-0.38	0.48	0.64	-0.30	
J	0.65	-0.44	0.82	0.62	-0.57	0.66	0.74	-0.02	0.42
									contd.

Continuation of previous slide

Red = Significant at 5 % level Blue = significant at 1 % level

A = Paracalanidae, B = Acartiidae, C = Pontellidae

D = Eucalanidae, E = Pseudodiaptomidae,

F = Cenropagidae, G = Oithonidae, H = Clausidiidae,

I = Ectinosomidae, J = Laophontidae.

ZOOPLANKTONS

Category I

Paracalanus sp., Acrocalanus sp., Acartia sp., A. spinicauda, Labidocera euchaeta, Pontella andersoni, Eucalanus subcrassus, E. elongatus, Pseudodiaptomus annandalei, P. hickmani, Oithona sp., "Saphirella" of indica, Microsetella rosea, Laophonte sp.

Category II

Pseudodiaptomus aurivilli, Euchaeta marina, E. wolfendeni, Euchaeta sp., Centropages dorsispinatus, Acartiella sewelli, Corycaeus danae, Euterpina acutifrons, Cladorostrata brevipoda, Harpactcus sp., Clytemnestra scutellata, Macrosetella gracilis.

CHAETOGNATHS

- Estuarine epipelagic chaetognath, Sagitta bedoti dominant throughout the year - euryhaline, tolerating a wide range of salinity.
- Maturity stages of chaetognath was based on the development of ovaries (Zo, 1973) as follows:
 - (a) Stage I: no visible ovaries.
 - (b) Stage II: developing ova, some ova of different sizes but none yet matured.
 - (c) Stage III: One or more mature ova of dimension larger than the quarter of body width.
- Frequency of mature S. bedoti was very small in number in comparison with the juveniles (Station 1). Scarcity of adults is attributed to their presence in deeper layers.

Simple, Partial and multiple correlation coefficients between population density of *Sagitta bedoti* (M), salinity (y) and water temperature (Z) at stations 1, 2 and 3.

12.1 4	r _{MY}	r _{MZ}	r _{yz}	r _{MY-Z}	r _{MZ-Y}	r _{M-YZ}
100	1	2 9				1 80
Station	0.7325b	- 0.1231	0.0530	0.7458	- 0.2382	0.7501 ^b
		E.K.	100			
Station 2	0.4434a	0.2882	0.1959	0.4142a	0.2290	0.4887a
_		100				
Station 3	0.6119b	- 0.3090	0.1091	0.3424	- 0.4778	0.5172b
	4		1111			

Size ranges of different breeding stages of *S. bedoti*

Size range (cm) Mean + SD

Station 1 0.55 - 1.05 0.776 <u>+</u> 0.139

Station 2 1.30 – 1.90 1.557 <u>+</u> 0.142

Station 3 1.75 – 1.90 1.825 <u>+</u> 0.106

Digestion of zooplankton for trace elements

- . 1 g dry zooplankton sample was treated with 2 ml HNO $_3$ (65%) and 1 ml H $_2$ O $_2$ (30%) (proanalysis E. Merck) (Dalziel and Baker, 1983) in a 'Parr bomb' at 110% for 2 hr.
- The mass was transferred into an Erlenmeyer flask and the volume reduced to about 1 ml by gently heating the flask. When dark fumes of NO₂ subsided, 2 ml of 30% H₂O₂ was added.
- The volume reduced to almost dryness.

For selenium

- For Se, an aliquot of 10 ml was taken into a separating flask followed by addition of 10 ml 2.5 vol. % tri-iso-octylamine solution. The flask was shaken for 2 min and after clear phase separation, the aqueous phase was drained out. Se stripped from the loaded organic phase by shaking with 2 ml of 0.1 M HCL solution. Depending on selenium content, 200-500 μ l solution was transferred in to the reaction vessel of hydride generator along with 10 ml of 1.2 M HCL solution.
- Se content was measured by the hydride generation atomic absorption spectrometric (HG-AAS) technique. Blank digestion was also performed to determine the background correction of reagents.
- A Perkin-Elmer atomic absorption spectrometer, equipped with Perkin-Elmer hydride generating system (model MHS-10) and deuterium background corrector, was used to record the absorption signals.
- For quality control, certified reference material 'Oyster tissue (NBS SRM 1566)' was also considered.

TRACE METALS

- Zooplankton accumulate metals in two ways: by direct adsorption from water and by assimilation of metals from food and detrital particles ingested by the animals.
- High concentration of Zn in mixed zooplankton during premonsoon period might be due to presence of the dominant copepod group accumulating Zn by adsorption induced by several factors.
- Meroplanktons accumulated higher concentration of metals where Pb was also present - most susceptible to environmental conditions modified by human activities.
- Prevalent variation of metals in zooplankton may be due to combination of factor affecting the uptake rate of metals by individual groups.
- Elevated Se concentration in zooplankton results from grazing on phytoplankton and retention of Se.

Table: Concentration of heavy metals (mg/kg) in some major groups of zooplankton from Hugli Estuary

Zooplankton groups	Fe	Zn	Cu	Mn	Ni	Se
POSTMONSOON			1000	-	-	
Mixed zooplankton	950.0	30.0	25	70.0	3.0	3.85
Prawn larvae	1478.0	136.8	37.6	105.8	ND	4.84
Fish larvae	257.0	280.0	40	ND	8.0	3.05
Megalopa	925.5	120.5	25.0	65.5	ND	3.15
PREMONSOON						
Mixed zooplankton	209.0	510.0	90.0	ND	7.5	1.24
Prawn larvae	1143.8	162.0	50.1	95.9	ND	2.19
Fish larvae	417.58	106.07	22.28	128.28	ND	1.05
Megalopa	1058.0	101.19	70.47	75.62	ND	2.18

ND = Not detectable.