The Effect of Temperature and Food on Zooplankton Gross Growth Efficiency

Neil James, Andrew Hirst, David Montagnes, Eugene Murphy & David Atkinson

Gross Growth Efficiency

 The ratio or fraction of biomass ingested that is converted to biomass by a predator in a given time interval

$$GGE = \frac{\Delta B}{\Delta I}$$

Where ∆I is amount of prey biomass ingested and ∆B
is the amount of new biomass produced by the
predator over time

Gross Growth Efficiency

- Important measurement for detailing the flow of material from prey to predator
- Also allows the calculation of the proportion of material lost (through respiration, excretion and egestion)

Gross Growth Efficiency

- A composite of growth and ingestion
- The relationship GGE has with independent variables is therefore a composite of how they influence both ingestion and growth
- May vary with e.g. temperature, food concentration and food quality

Effect of GGE on food-web

GGE plays an important role in determining the amount of biomass transferred from one trophic level (*n*-1) to the next (*n*)

Effect of GGE on food-web

Application of GGE

- Ecosystem models have often assumed:
 - A constant GGE value for all types of zooplankton (approximately 30%)
 - No temperature dependence

E.g. Stoecker & Evans (1985), Pomeroy (1999), Anderson & Turley (2003), Calbet & Landry (2004), Lewis (2005), Buitenhuis *et al.* (2006)

Previous findings and predictions

- Similar means found across different zooplankton groups (GGE = 20-30%) (Straile 1997)
- Metazoans to achieve higher efficiencies than protozoans (Calow 1977, Azam et al. 1984, Fasham 1985)
- Protozoan GGE values to fall within the range of 30-60% (Caron et al. 1990)

Aims

- Provide a new database, correcting GGE values miscalculated by authors
 - Organism growth during the experiment not taken into account when calculating ingestion
 - Incorrectly used the slope of growth vs. ingestion
- Detail the effect of temperature and food concentration on the GGE of:
 - Ciliates, scyphozoans, cladocerans, adult and juvenile copepods, nano/microflagellates, ctenophores, dinoflagellates and rotifers

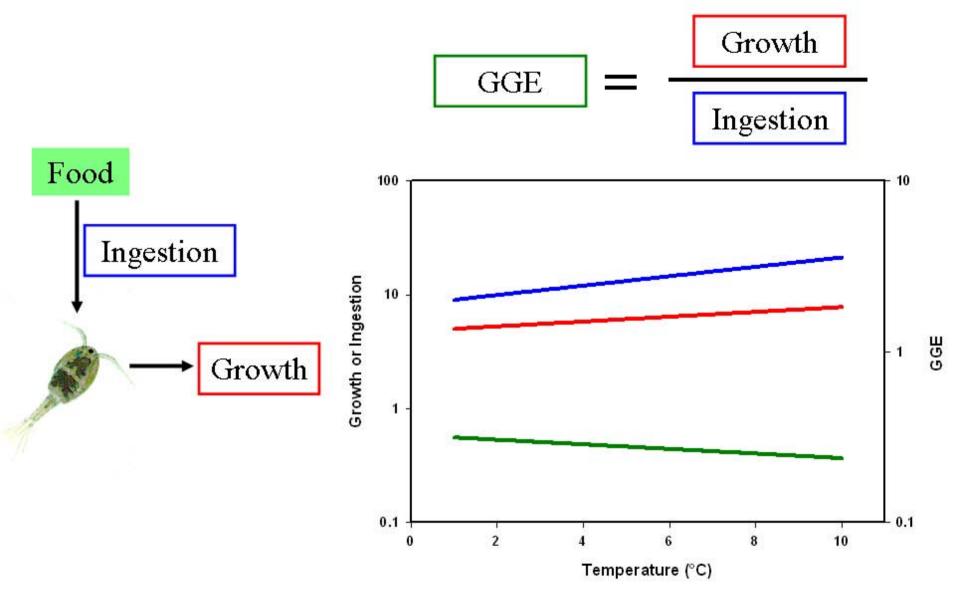
Questions to be answered

- Does GGE vary with temperature within and between taxonomic groups?
- How does GGE vary with food concentration within taxonomic groups?
- Do mean GGE values vary between taxa?
- How does diet type affect mean GGE within taxonomic groups?

Methods

- An extensive literature search was conducted to obtain planktonic GGE data
- n = 1700 from 76 papers
 - Approximately 2.5 times that of previous syntheses on GGE
- Global spatial distribution
- In cases where an incorrect term was used recalculated the value
- All values converted to carbon (growth and ingestion)

General Linear Models


 Assumed an approximately linear relationship between log₁₀ GGE and both temperature and log₁₀ food concentration

Assuming both ingestion and growth increase with increasing temperature

Assuming both ingestion and growth increase with increasing temperature

Therefore we assume \log_{10} GGE has a linear relationship with temperature

GGE Growth

Ingestion

Where temperature dependence of ingestion > temperature dependence of growth:

GGE decreases with increasing temperature

GGE Growth

Ingestion

Where temperature dependence of ingestion = temperature dependence of growth:

GGE is constant with increasing temperature

Food Concentration

- Where food concentration
 zero, ingestion = zero,
 growth < zero
- At low food concentrations, ingestion < maintenance costs and therefore GGE is negative
- Higher food concentrations allow ingestion > maintenance costs resulting in positive growth and GGE
- At very high food concentrations GGE may decrease, for example as a result of superfluous feeding

Food Concentration

- Assumed a type II functional relationship between GGE and food concentration
- log₁₀ transformation of food concentration and GGE was applied to provide a greater approximation to a linear relationship for use in general linear models
- Where high food concentrations were associated with a decrease in GGE these were excluded from analyses

General Linear Models

- For each taxonomic group:
- Tested effect of temperature, log₁₀ food concentration and an interaction term on log₁₀ GGE
- Temperature and food concentration may co-vary especially from experiments where food concentration was not controlled
- Minimum Adequate Models (MAMs) arrived at by backwards selection (P<0.05)

Differences between and within taxa

- GGEs compared with all others via a simultaneous Tukey test at a 95% confidence level (P= 0.05)
- Data were separated according to diet type for ciliates, nano/microflagellates, dinoflagellates and copepods
 - Diets classified as bactivorous, herbivorous, carnivorous, and mixed (n=1366)
 - GGE values were compared between diet types within taxa using one-way ANOVA at a 95% confidence level

Dinoflagellates

Dinoflagellates

 log_{10} GGE has no relationship with log_{10} food concentration (P>0.05)

 log_{10} GGE has a positive relationship with temperature (P<0.001, n=81, r²=28%)

Juvenile Copepods

Juvenile Copepods

 log_{10} GGE has a positive relationship with log_{10} food concentration (P<0.001, n=73, r^2 =18%)

 log_{10} GGE has no relationship with temperature (P>0.05)

Scyphozoans

Scyphozoans

 log_{10} GGE has a positive relationship with log_{10} food concentration (P<0.001)

 log_{10} GGE has a positive relationship with temperature (P<0.001, n=121, r²=58%)

Temperature Dependence

Dinoflagellates log_{10} GGE = 0.75 + 0.038T

Ctenophores $\log_{10} GGE = 0.17 + 0.045T$

Scyphozoans $\log_{10} GGE = -0.86 + 0.045T + 0.46\log_{10} F$

Cladocerans $log_{10} GGE = 3.24 - 0.048T - 0.358log_{10}F$

Bacteria \log_{10} GGE = 1.56 - 0.020T

T = temperature

F = food concentration

Temperature Dependence

```
Dinoflagellates log_{10} GGE = 0.75 + 0.038T
```

Ctenophores
$$log_{10}$$
 GGE = $0.17 + 0.045$ T

Scyphozoans
$$\log_{10} GGE = -0.86 + 0.045T + 0.46\log_{10} F$$

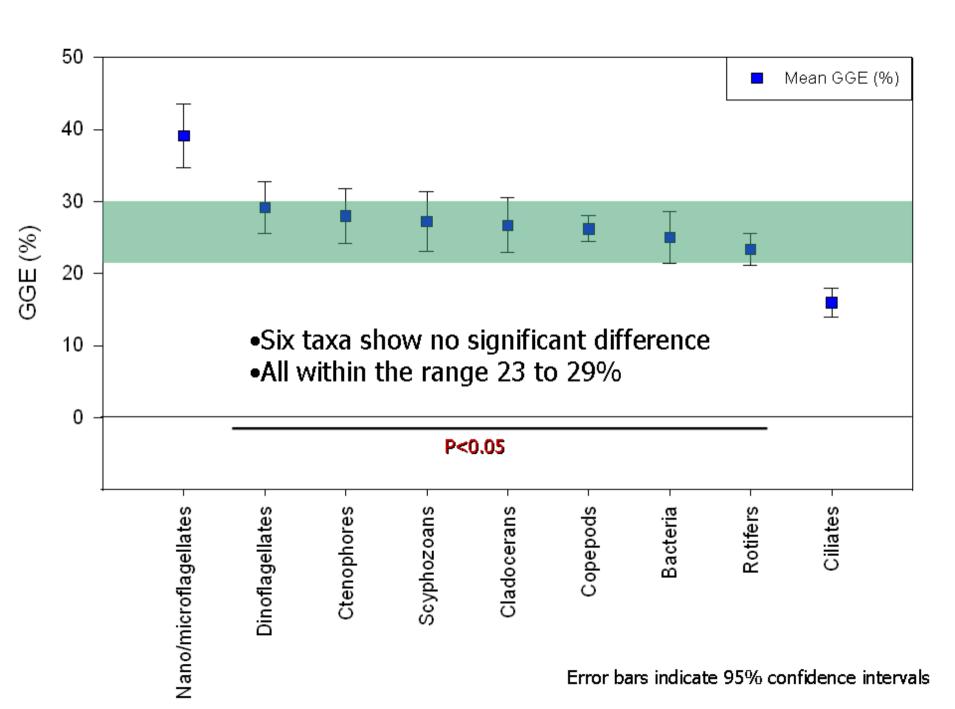
Cladocerans
$$log_{10} GGE = 3.24 - 0.048T - 0.358log_{10}F$$

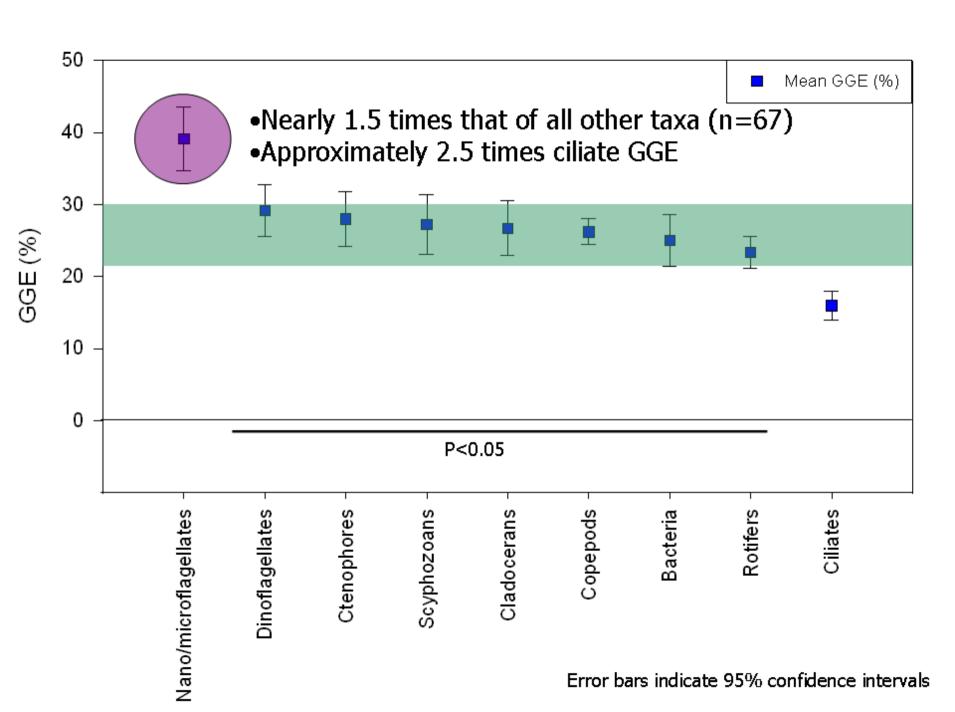
Bacteria
$$\log_{10} \text{GGE} = 1.56 - 0.020\text{T}$$

T = temperature

F = food concentration

Questions to be answered


- Does GGE vary with temperature within and between taxonomic groups?
- How does GGE vary with food concentration within taxonomic groups?
- Do mean GGE values vary between taxa?
- How does diet type affect mean GGE within taxonomic groups?


- Dinoflagellate, ctenophore and scyphozoan GGEs increase with temperature
 - Suggests growth has a higher temperature dependence than ingestion
- Cladocean GGEs decrease with temperature
 - Suggests ingestion has a higher temperature dependence than growth
- No temperature dependence was found in:
 - Cilates, nano/microflagellates, rotifers, adult and juvenile copepods

Questions to be answered

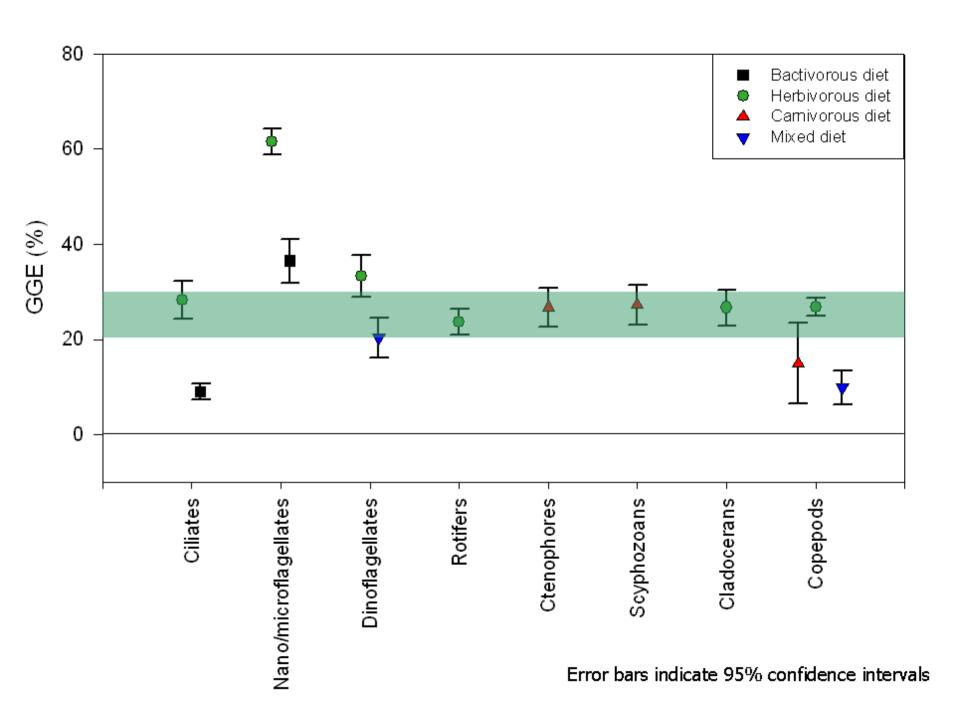
- Does GGE vary with temperature within and between taxonomic groups?
- How does GGE vary with food concentration within taxonomic groups?
- Do mean GGE values vary between taxa?
- How does diet type affect mean GGE within taxonomic groups?

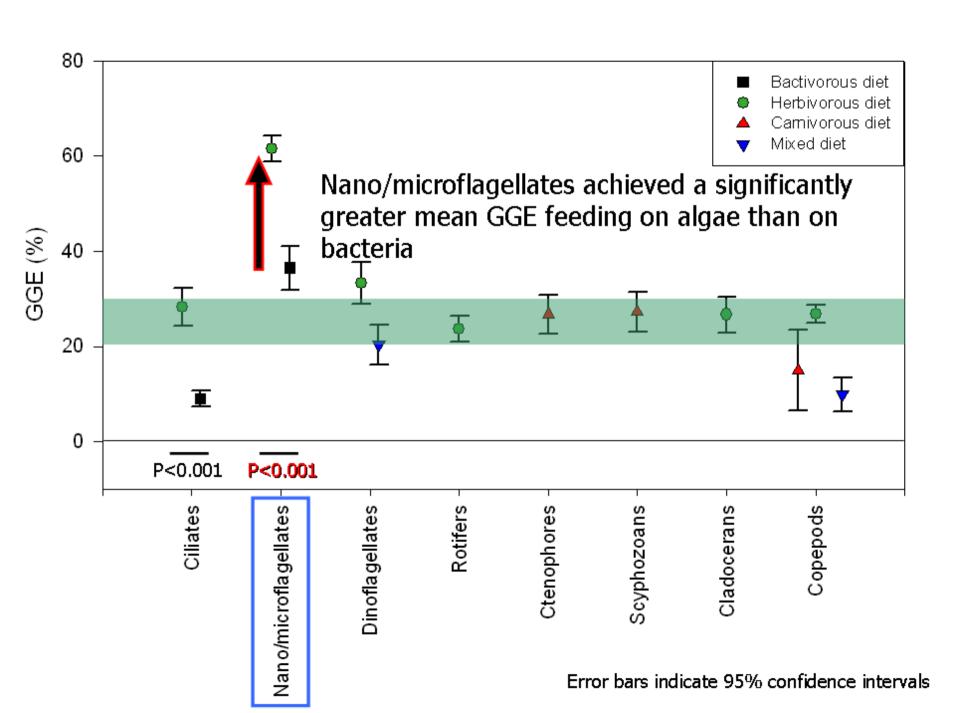
- GGE increased with food concentration in scyphozoans and juvenile copepods
- GGE decreased with food concentration in ciliates and cladocerans
- No relationship was found for the remaining 4 taxa
 - Prey type / food quality?
 - Species-specific food saturation points?

Questions to be answered

- Does GGE vary with temperature within and between taxonomic groups?
- How does GGE vary with food concentration within taxonomic groups?
- Do mean GGE values vary between taxa?
- How does diet type affect mean GGE within taxonomic groups?

- Mean GGEs across six taxa did not differ significantly from one another
- In contrast to Straile (1997), the mean GGE of two groups were significantly different
- Nano/microflagellates had a significantly higher mean GGE
- Ciliates achieved a significantly lower mean GGE


- Metazoans did not show consistently higher efficiencies than protozoans
 - Protozoans achieved higher and lower mean GGEs
- Nano/microflagellate mean GGE is the only protozoan taxon to fall within the range of 30-60% predicted by Caron et al. (1990)
- The mean GGE of all taxa, with the exception of nano/microflagellates, were below 30%



Questions to be answered

- Does GGE vary with temperature within and between taxonomic groups?
- How does GGE vary with food concentration within taxonomic groups?
- Do mean GGE values vary between taxa?
- How does diet type affect mean GGE within taxonomic groups?

- All four taxa that could be separated by diet type had a greater mean GGE when feeding on algae
- Ciliates and nano/microflagellates were significantly less efficient when feeding on bacteria
- Copepods were significantly less efficient when feeding carnivorously
- Prey compostion and size may be an important factors

Conclusions

- GGE is influenced by temperature, with the nature and extent of this relationship differing between taxa
- Taxonomic groups differ in their inherent GGE values (in contrast to findings by Straile 1997) which are heavily influenced by diet type
- Diet type is therefore an important consideration when considering GGE and applying them within ecosystem models

Conclusions

- Therefore temperature, through its affect on GGE is likely to have a significant impact on the structure of the planktonic food-web
- In order to improve accuracy, ecosystem models should take into account the different efficiencies of taxa, temperature and food dependence of GGE
- We aim to incorporate our findings into simple and complex planktonic ecosystem models

Acknowledgements

All the authors that contributed data

British Antarctic Survey

Funding by N.E.R.C.

