

Effects of diatom aldehydes on copepod reproduction: use of giant liposomes encapsulated with decadienal

Dept. Toxicological and Pharmaceutical Chemistry-University of Napoli Federico I I

Feeding experiments: *Calanus helgolandicus* fed *Skeletonema* costatum (7.3 x10⁴ cells ml⁻¹)

Lanora et al. Nature 2004

Effects of maternal and neonate diet: Feeding+incubation exp.

Effects of SKE diet on development rates and % of neonate survivorship

Effects of the aldehyde decadienal (DD + PRO) on development and % survivorship

Lanora et al., Nature 2004 (modified)

Aim:

- To establish a precise relationship between decadienal uptake and reproductive failure in copepods
- we prepared inert carriers, LIPOSOMES, encapsulated with a known concentration of decadienal,
- able to deliver diatom-derived aldehyde after copepod ingestion.

Liposomes:

Phosphatidylcholin/Cholesterol (2:1 mol/mol)

- prepared in the same size range of copepod food (about 7 μm)
- biodegradable and not toxic
- → Stable in time (up to 15 days)
 - Blank liposomes

Hand-shaking and hydration

☐ FITC-dextran encapsulating-liposomes

- □ ³H-cholesterol labelled liposomes
- □ trans-trans 2,4 decadienal encapsulating liposomes

Feeding experiments with FITC-loaded liposomes

Buttino et al. JEB 2006

Feeding experiments with FITC-loaded liposomes

Starved copepods 0.2 mm P. minimum for 48h FITC-liposomes for 48h P. minimum + FITC-liposomes for 24h

Buttino et al. JEB 2006

Effect of liposome diet on the reproductive physiology of *T. stylifera*

Liposome filtration rate

Copepods fed 30'

³H-liposomes with and without *P. minimum*

Ingestion rate 0.14 ml/hour

Food type	% ingested liposomes
³ H-Liposomes + PRO	16
³ H-Liposomes	7.6

Buttino et al. JEB 2006

Conclusions I

- Liposomes were actively ingested by *T. stylifera* when mixed with the algal food.
- The very low egg production reported when administered alone, suggests that liposomes per se did not add any nutritive value to the diet, making them a good candidate as inert carriers to study copepod physiology in ecotoxicological experiments or nutritional requirements studies.

Long-term effects of liposome ingestion at different lipid concentrations

Effects of decadienal-encapsulating liposomes on copepod egg viability

Final concentration of DD in liposomes Final concentration of DD in liposomes $3 \pm 0.23 \, \text{ng/ml}$

 $4.6 \pm 1.2 \text{ ng/ml}$

Effects of decadienal-encapsulating liposomes on female survival

Decadienal-encapsulating liposomes induce apoptosis in copepod embryos as already observed in feeding and in incubation experiments

Do decadienal-encapsulating liposomes induce apoptosis in females?

Total body apoptosis

Female fed 10 days egg viability 7%

Control female egg viability 93%

Conclusions II

 Decadienal-encapsulating liposomes are the only tool allowing to test the effect of a precise concentration of the diatom-derived molecules on the reproductive physiology of copepods.

(diatom-aldehyde production changes with the life cycle of the algae, aldehyde production re-initiated when it is removed by the medium, so it is very difficult to determine the precise quantity of aldehydes per cell).

- This is the first study that rigorously provides evidence that ingestion of DD induces egg mortality in copepods
- The combined effects of different aldehydes (synergistic or antagonistic) can be tested on copepods, modulating their concentrations to better understand phytoplankton-herbivore interactions at sea.
- Threshold aldehyde concentration (known as No Observed Adverse Effect Level) could reveal different sensitivity among copepod species to diatom-aldehyde compounds, helping to understand the ecological role of these metabolites on copepod population.

Thanks to all colleagues

Adrianna Lanora Giuseppe De Rosa Ylenia Carotenuto Marialuisa Mazzella Giovanna Romano Valentina Vitiello Francesco Esposito and Antonio Miralto